We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.
Additional normalization uncertainty of 0.4 pct not included.
Additional normalization uncertainty of 0.4 pct not included.
Additional normalization uncertainty of 0.4 pct not included.
: We have measured the spin-dependent structure function $g_1~p$ of the proton in deep inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003<x<0.7$ and $1\,\mbox{GeV}~2<Q~2<60\,\mbox{GeV}~2$. Its first moment, $\int_0~1 g_1~p(x) dx $, is found to be $0.136 \pm 0.011\,(\mbox{stat.})\pm 0.011\,(\mbox{syst.})$ at $Q~2=10\,\mbox{GeV}~2$. This value is smaller than the prediction of the Ellis--Jaffe sum rule by two standard deviations, and is consistent with previous measurements. A combined analysis of all available proton, deuteron and neutron data confirms the Bjorken sum rule to within $10\%$ of the theoretical value.
Results on the virtual photon proton asymmetry.
Results on the spin structure function of the proton.
Data for g1 at fixed Q**2 = 10 GeV (assuming no Q**2 dependence of A1).
The production of neutral strange particles (K0, Λ) inp Ar,pXe and\(\bar p\)Xe collisions at 200 GeV is investigated in the NA5 experiment using a streamer chamber at the CERN SPS. Results are presented on inclusive cross sections, average multiplicities, and on rapidity and transverse momentum distributions of neutral strange particles.
No description provided.
No description provided.
No description provided.
We compare the particle flow in the event plane of three-jet qq¯g (quark-antiquark-gluon) events with the particle flow in radiative annihilation events qq¯γ (quark-antiquark-photon) for similar kinematic configurations. In the angular region between quark and antiquark jet, we find a significant decrease in particle density for qq¯g as compared to qq¯γ. This effect is predicted in QCD as a result of destructive interference between soft-gluon radiation from quark, antiquark, and hard gluon.
No description provided.
No description provided.
We present the results of an experiment to search for associated charm production near threshold in 13-GeV/c π−p interactions. A large aperture PWC spectrometer was sensitive to the decay fragments of the forward-produced D*−’s expected from the two-body reactions π−+p→D*−+Λc+,Σc +,. . . . The missing baryon mass was determined from the vector momenta of the incident pion and the candidate D*−. No evidence for these reactions was found, which resulted in a 7-nb upper limit (95% confidence level) for each of the cross sections σ(π−p→D*−Λc+) and σ(π−p→D*−Σc+).
Axis error includes +- 0.0/0.0 contribution (?////NOT GIVENDECAY-BR(BRN=D*(2010)- --> AD0 PI-,BR=64 IN PCT)//DECAY-BR(BRN=AD0 --> K+ PI-, BR=3 IN PCT)).
No description provided.
Data are presented on the Gross-Llewellyn Smith sum rule obtained from combined narrow-band neon and Freon bubble-chamber neutrino-antineutrino experiments. Remarkably no significant deviation from the parton-model prediction for the sum rule is observed at very low values of q2≲1 GeV2. Limits on the effective QCD scale parameter Λ and on the magnitude of the twist-4 correction are set. The best fit, neglecting higher-twist contributions, gives Λ=92−36+20 MeV.
NACHTMANN MOMENT IS EVALUATED (IE TARGET MASS COEERCTIONS INCLUDED).
The study of π ± , π 0 , K 0 and Λ production in the fragmentation regions (| x |0.2) of K − p interactions at 70 GeV/ c shows that the x -dependence of each invariant cross section is well described by the power law (1−| x |) n suggested by the dimensional counting rule. Furthermore, pion production is found, both in K − and proton fragmentation regions, to be very similar to their production in ν( ν ) p interactions as expected from quark-parton models. The quark and diquark fragmentation functions D u π , D uu π and D ud π are extracted from our data.
No description provided.
Cross section and pp¯ in variant mass distribution of the reaction γp→pp¯p are presented. Further evidence for a narrow pp¯ mass state at 2.023 GeV will be given.
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERRORS HAVE BEEN FOLDED IN QUADRATURE WITH STATISTICAL ERRORS).
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERRORS HAVE BEEN FOLDED IN QUADRATURE WITH STATISTICAL ERRORS).
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERRORS HAVE BEEN FOLDED IN QUADRATURE WITH STATISTICAL ERRORS).
None
No description provided.
The energy dependence of the transverse momentum invariant distribution of pions and neutral kaons is studied in K − p interactions between 14.3 and 70 GeV/ c . The large P T part of the distributions violates the Feynman scaling and, above P T ≃ 1.5 GeV/ c , appears to be reasonably described by hard scattering models. The variation of the average transverse momentum is also studied as a function of the c.m. reduced longitudinal momentum, and its behaviour is compared to the data obtained via the hadronic shower produced in lepton-hadron interactions.
HERE K0 MEANS K0 OR AK0 I.E. K(NEUTRAL).
No description provided.