We present a study of J ψ meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The J ψ mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → J ψ X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ W γp ≤ 180 GeV and Q 2 ≲ 4 GeV 2 . Using the flux of quasi-real photons with Q 2 ≲ 4 GeV 2 , a total production cross section of σ ( γp → J / ψX ) = (56±13±14) nb is derived at an average W γp =90 GeV. The distribution of the squared momentum transfer t from the proton to the J ψ can be fitted using an exponential exp(− b ∥ t ∥) below a ∥ t ∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV −2 .
No description provided.
No description provided.
QED background subtracted.
The tensor analyzing power T20 for the reaction d↑+12C→p(0°)+X has been measured in the region of proton internal momenta k in light-cone dynamics up to 1 GeV/ c. Measurements have been carried out at Dubna Synchrophasotron with polarized deuteron beam at deuteron momenta up to 9 GeV/ c. When k increases the experimental values of T20 have a tendency to approach the value ( −0.3) obtained by the calculation based on the reduced nuclear amplitude method in which the quark degrees of freedom are taken into account.
The momentum K, called momentum in light-cone dynamics, is expressed by thefollowing formula k**2=mt**2/(4*alpha*(1-alpha))-m**2,with mt**2=kt**2+m**2 wh ere kt is the proton transverse momentum.The light-cone variable alpha is the p art of the deuteron momentum carried by the proton in the infinite momentum frameand is expressed by the formula alpha=(Ep+Pp)/(Ed+Pd).
No description provided.
No description provided.
Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2 . It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant α s as a free parameter. The measured value, α s ( M Z 2 ) = 0.123 ± 0.018, is in agreement both with determinations from e + e − annihilation at LEP using the same observable and with the world average.
Determination of ALP_S(MZ**2). Error contains both statistics and systematics.
A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.
No description provided.
No description provided.
No description provided.
The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.
JINR.
BNL-815.
CERN-EMU-001.
In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.
No description provided.
PROJECTILE ASSOCIATED HE-FRAGMENTS.
No description provided.
A measurement is presented, using data taken with the H1 detector at HERA, of the contribution of diffractive interactions to deep-inelastic electron-proton scattering. The diffractive contribution to the proton structure function is evaluated as a function of the appropriate deep-inelastic scattering variables using a class of deep-inelastic ep scattering events with no hadronic energy flow in an interval of pseudo-rapidity adjacent to the proton beam direction. The dependence of this contribution on x-pomeron is consistent with both a diffractive interpretation and a factorisable ep diffractive cross section. A first measurement of the deep-inelastic structure of the pomeron in the form of a factorised structure function is presented. This structure function is observed to be consistent with scale invariance.
No description provided.
No description provided.
No description provided.
A contact interaction analysis is presented to search for new phenomena beyond the Standard Model in deep inelastic $e~\pm p \rightarrow e~\pm \, hadrons$ scattering. The data are collected with the H1 detector at HERA and correspond to integrated luminosities of $0.909 \ {\rm pb}~{-1}$ and $2.947 \ {\rm pb}~{-1}$ for electron and positron beams, respectively. The differential cross sections $d\sigma / dQ~2$ are measured in the $Q~2$ range bet\-ween $160 \ \GeV~2$ and $20,000 \ \GeV~2$. The absence of any significant deviation from the Standard Model prediction is used to constrain the couplings and masses of new leptoquarks and to set limits on electron--quark compositeness scales and on the radius of light quarks.
Additional overall normalization error of 3.5 pct due to systematic errors of the luminosity measurement.
Additional overall normalization error of 1.8 pct due to systematic errors of the luminosity measurement.
Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of \ee data. It is shown that certain aspects of the quarks emerging from within the proton in \ep interactions are essentially the same as those of quarks pair-created from the vacuum in \ee annihilation. The measured area, peak position and widthof the fragmentation function show that the kinematic evolution variable, equivalent to the \ee squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in parton showers.
Distribution of the cosine of the Breit frame polar angle for data with the Breit frame energy flow selection. Statistical errors only.
Distribution of the cosine of the Breit frame polar angle for data before the Breit frame energy flow selection. Statistical errors only.
The fragmentation function for the current hemisphere of the Breit frame. Data are Breit frame energy flow selected only. Statistical errors only.