A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.
Hadron-level differential SD cross section as a function of Delta Eta.
Hadron-level differential SD cross section as a function of t.
Hadron-level differential SD cross section as a function of log_10 xi.
Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at sqrt(s) = 13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pt ~ 0.1-1.7 GeV and rapidities abs(y) < 1. The pt spectra and integrated yields are compared to previous results at smaller sqrt(s) and to predictions of Monte Carlo event generators. The average pt increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at sqrt(s) = 0.9, 2.76, and 7 TeV show that the average pt and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV for multiplicity class 1 (Nrec=0-9).
A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.
The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.
The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.
The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.
Transverse momentum ($p_{\rm{T}}$) spectra of pions, kaons, and protons up to $p_{\rm{T}} = 20$ GeV/$c$ have been measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV using the ALICE detector for six different centrality classes covering 0-80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at $p_{\rm{T}} \approx 3$ GeV/$c$ in central Pb-Pb collisions that decreases towards more peripheral collisions. For $p_{\rm{T}} > 10$ GeV/$c$, the nuclear modification factor is found to be the same for all three particle species in each centrality interval within systematic uncertainties of 10-20%. This suggests there is no direct interplay between the energy loss in the medium and the particle species composition in the hard core of the quenched jet. For $p_{\rm{T}} < 10$ GeV/$c$, the data provide important constraints for models aimed at describing the transition from soft to hard physics.
Invariant yields of identified pions in Pb-Pb collisions.
Invariant yields of identified kaons in Pb-Pb collisions.
Invariant yields of identified protons in Pb-Pb collisions.
The measurement of primary $\pi^{\pm}$, K$^{\pm}$, p and $\overline{p}$ production at mid-rapidity ($|y| <$ 0.5) in proton-proton collisions at $\sqrt{s} = 7$ TeV performed with ALICE (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC) is reported. Particle identification is performed using the specific ionization energy loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/$c$ for pions, from 0.2 up to 6 GeV/$c$ for kaons and from 0.3 up to 6 GeV/$c$ for protons. The measured spectra and particle ratios are compared with QCD-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.
Combined transverse momentum spectra of PI, K and P, sum of particles and antiparticles, measured at mid-rapidity in pp collisions at SQRT(S) = 7 TeV normalized to the number of inelastic collisions. Statistical and systematic uncertainties are reported. The uncertainty due to the normalization to inelastic collisions (+7-4 %) is not included.
Kaon/Pion ratio in pp collisions at SQRT(S) = 7 TeV.
Proton/Pion ratio in pp collisions at SQRT(S) = 7 TeV.
Transverse momentum spectra of $\pi^{\pm}$, $\rm K^{\pm}$ and p($\bar{\rm p}$) up to $p_{\rm T}$ = 20 GeV/$c$ at mid-rapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at $p_{\rm T} \approx 3 GeV/c$ in central Pb-Pb collisions. Below the peak, $p_{\rm T}$ < 3 GeV/$c$, both ratios are in good agreement with hydrodynamical calculations, suggesting that the peak itself is dominantly the result of radial flow rather than anomalous hadronization processes. For $p_{\rm T}$ > 10 GeV/$c$ particle ratios in pp and Pb-Pb collisions are in agreement and the nuclear modification factors for $\pi^{\pm}$, $\rm K^{\pm}$ and $\rm p$($\bar{\rm p}$) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets.
Invariant yields of identified pions in central and peripheral Pb-Pb collisions, together with the unscaled pp reference yields.
Invariant yields of identified kaons in central and peripheral Pb-Pb collisions, together with the unscaled pp reference yields.
Invariant yields of identified protons in central and peripheral Pb-Pb collisions, together with the unscaled pp reference yields.
The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi}^{-}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega}^{-}$ in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING-B, that are used to model the particle production in pp collisions. The energy dependence of $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi^{-}}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega^{-}}$, reaching values compatible with unity for $\sqrt{s} = 7$ TeV, complement the earlier $\bar{\rm p}/{\rm p}$ measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\alpha_{\rm {J}} \approx 0.5$, which are suppressed with increasing rapidity interval ${\rm \Delta} y$. Any significant contribution of an exchange not suppressed at large ${\rm \Delta} y$ (reached at LHC energies) is disfavoured.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of pT.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of rapidity.
The LambdaBar/Lambda ratio at sqrt(s) = 0.9 TeV as a function of pT.
Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X < 200$ GeV/$c^2$) $\sigma_{\rm SD}/\sigma_{\rm INEL} = 0.21 \pm 0.03, 0.20^{+0.07}_{-0.08}$, and $0.20^{+0.04}_{-0.07}$, respectively at centre-of-mass energies $\sqrt{s} = 0.9, 2.76$, and 7~TeV; for double diffraction (for a pseudorapidity gap $\Delta\eta > 3$) $\sigma_{\rm DD}/\sigma_{\rm INEL} = 0.11 \pm 0.03, 0.12 \pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\sqrt{s} = 0.9, 2.76$, and 7~TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\sigma_{\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \pm 1.2 (lumi)$ mb at $\sqrt{s} =$ 2.76~TeV and $73.2^{+2.0}_{-4.6} (model) \pm 2.6 (lumi)$ mb at $\sqrt{s}$ = 7~TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton--antiproton and proton--proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.
Production ratios of SD with $M_{X} < 200 GeV/c^2$ to INEL.
Production ratios of DD with $\Delta\eta >3$ to INEL.
Single diffraction cross-section for $M_{X} < 200 GeV/c^2$.
Spectra of identified charged hadrons are measured in pp collisions at the LHC for sqrt(s) = 0.9, 2.76, and 7 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and for rapidities abs(y) < 1 are identified via their energy loss in the CMS silicon tracker. The average pt increases rapidly with the mass of the hadron and the event charged-particle multiplicity, independently of the center-of-mass energy. The fully corrected pt spectra and integrated yields are compared to various tunes of the PYTHIA6 and PYTHIA8 event generators.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 900 GeV.
Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) and at a centre-of-mass energy of 900 GeV.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 2760 GeV.
The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $\pi^-/\pi^+$, $(p + \bar{p})/(\pi^+ + \pi^-)$, $(K^+ + K^-)/(\pi^+ + \pi^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $\eta$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $\Delta y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport.
The measured ratio of prompt antiproton to proton production at 900 GeV.
The measured ratio of prompt antiproton to proton production at 7000 GeV.
The measured ratio of prompt negative to positive kaon production at 900 GeV.