We report measurements of inelastic photoproduction of ω and ρ± mesons from hydrogen and deuterium at incident photon energies in the range 7.5-10.5 GeV. For ωΔ and ρ−Δ++ production, differential cross sections dσdt′ and spin density matrices are presented. For higher missing masses the cross sections dσdMX2 and invariant structure functions F(x) are also given. The data are compared to a one-pion-exchange model. We conclude that pion exchange is dominant for inelastic ω photoproduction, but unimportant for ρ±.
We report measurements of the inclusive π− and π+ yields in 24-GeV proton-proton collisions at θc.m.=90° for 2.2≤PT≤2.8 GeV/c. There is a high-PT deficit, rather than excess, at this incident energy.
Relative rates for deep inelastic neutrino and antineutrino scattering without a finalstate muon have been measured. For neutrinos the result is Rν=σ(νμ+nucleon→νμ+hadrons)σ(νμ+nucleon→μ−+hadrons)=0.11±0.05. The corresponding ratio for antineutrinos is Rν¯=0.32±0.09.
A comprehensive measurement of the differential cross section for π±p and pp elastic scattering has been made at large center-of-mass angles. π−p and pp scattering were measured with incident laboratory momenta ranging from 2 to 9.5 GeV/c. π+p scattering was measured with momenta from 2 to 6.3 GeV/c. Scattering angles were in the range −0.3≲cosθc.m.≲0.4. The results of the experiment are compared to constituent models and statistical models.
This paper presents the final results on charged-current neutrino and antineutrino interactions with nuclei from experiment E-310 at Fermi National Accelerator Laboratory. The data sample, consisting of 21 578 neutrino-induced and 7358 antineutrino-induced events within the fiducial region in the energy range 20
Neutral-pion production in pp interactions has been studied using 8000 photon conversions in the Fermilab 15-ft bubble chamber. Inclusive π0 multiplicity moments and ππ correlation integrals are presented; f200 is determined to be + 3.0±0.8. For the semi-inclusive π0 multiplicity distributions we find 〈n(π0)〉n− to increase with n−, while the dispersions are n− independent. Results on f2−0, f200, and f2,n−00 are compared to predictions of simple cluster models.
This paper gives the results of a study of inelastic charged-current interactions of muon-type neutrinos with hydrogen and deuterium targets using the Argonne 12-foot bubble chamber. We discuss in detail the separation of the events from background. For the single-pion production reactions νp→μ−pπ+, νn→μ−nπ+, and νn→μ−pπ0, energy-dependent cross sections, differential cross sections, invariant-mass distributions, and the Δ++(1236) decay angular distribution are presented. These data are also used to study the isospin properties of the πN system. Comparisons of the data with models of single-pion production are made, and a direct test of partial conservation of the axial-vector current is discussed. Cross sections and invariant-mass distributions are given for the reactions in which more than one pion is produced. Ten events of strange-particle production were found, and the properties of these events are discussed. The energy dependence of the total νp and νn cross sections from threshold to 6 GeV was determined, and the σ(νn)σ(νp) ratio measured. This ratio and the inclusive x and y distributions rapidly approach the scaling distributions expected from the quark-parton model.
We have measured the forward production spectra of various neutral particles produced by π−, K−, p¯, and p at 200 GeV/c, and by π− at 290 GeV/c incident on a Be target. The salient features of these measurements are (1) copious production of KSo at large Feynman xL for incident π− and K−, (2) production of roughly equal fluxes of Λ0 and Λ¯0 for incident π−, and (3) close similarity of the following spectra: π−→n and K−→Λ0; π−→Λ0, π−→Λ¯0, and p→KS0; π−→KS0 and p→Λ0. The overall features of the various distributions seem to agree with the ideas of dimensional counting presented in the constituent-interchange model of quark collisions. Results are presented in terms of the invariant cross section Ed3σ(xL, PT=0)dp3 per Be nucleus for each inclusive reaction.
We have measured the cross section, the distribution of scattering angles, and the distribution of noncoplanarity angles for electron-positron elastic scattering at 5 GeV c. m. energy. An analysis based on 230 events with scattering angles between 50 and 130° yields a ratio of the experimental to theoretical quantum-electrodynamic cross section of 1.03 ± 0.09. The scattering-angle and noncoplanarity-angle distributions are also found to be in excellent agreement with the quantum-electrodynamic predictions.
Analysis of 5180 ν¯ interactions shows a variation with energy of the inelasticity (y) distributions over the range 10 to 220 GeV and a dependence on the scaling variable x. From these data are obtained the approximate x dependence of the sea quarks and a limit on the strength of right-handed coupling between the u quark and a massive b quark.