The cross section for deeply virtual Compton scattering in the reaction ep -> e gamma p has been measured with the ZEUS detector at HERA using integrated luminosities of 95.0 pb-1 of e+p and 16.7 pb-1 of e-p collisions. Differential cross sections are presented as a function of the exchanged-photon virtuality, Q2, and the centre-of-mass energy, W, of the gamma*p system in the region 5 < Q2 < 100 GeV2 and 40 < W < 140 GeV. The measured cross sections rise steeply with increasing W. The measurements are compared to QCD-based calculations.
Measurements of the DVCS process cross section as a function of Q**2 at average W = 89 GeV. Data are given seperately for the E+ P and E- P interactions.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E+ P data sample.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E- P data sample.
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at \sqrtsNN=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for $5\lt\pT\lt12$ GeV/c. The collision energy dependence of the yields and the centrality and \pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of \pT-dependent suppression, which may be expected from models incorporating jet attentuation in cold nuclear matter or scattering of fragmentation hadrons.
Inclusive invariant pT distributions of (h+ + h−)/2 for centrality-selected Au+Au and p+p NSD interactions. Hash marks at the top indicate bin boundaries for pT>4 GeV/c.The invariant cross section for p+p is indicated on the right vertical axis.
R200/130(pT ) vs. pT for (h+ + h−)/2 for four different centrality bins. The overall normalization uncertainty is +6−14% for the 40-60% bin and is negligible for the other panels. Calculations are described in the text.
RAA(pT) (Eq. 1) for (h+ + h−)/2 in |η|<0.5, for centrality-selected Au+Au spectra relative to the measured p+p spectrum. The p+p spectrum is common to all panels. Calculations are described in the text.
The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 < eta(jet) < 2. Dijet cross sections are presented for events with a jet having E_T(jet) > 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, <n_sbj>, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from <n_sbj> at y_cut=0.01 for jets with 25<E_T(jet)<119 GeV, is alphas(M_Z) = 0.1202 +-0.0052 (stat.) +0.0060-0.0019 (syst.) +0.0065-0.0053 (th.). The mean subjet multiplicity as a function of Q**2 is found to be consistent with that measured in NC DIS.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1995-1997 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the 1999-2000 sample.
Inclusive jet cross section DSIG/DQ**2 for jets in the lab. frame. Data from the combined sample.
We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.
The minimum bias (0-80% of the collision cross-section) v2(pT) of K0s. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.
The minimum bias (0-80% of the collision cross-section) v2(pT) of Lambda+Lambdabar. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.
The minimum bias (0-80% of the collision cross-section) v2(pT) of charged hadrons. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at $\sqrt{s_{NN}}=130$ GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freezeout. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
Values for the three-pion correlation function using high multiplicity negative pions. Errors are statistical+systematic.
Three-pion correlator values (r3/2) for positive and negative pions in central and mid-central events. Errors are statistical+systematic.
Three-pion correlator intercept values (r3(0)/2) for positive and negative pions in central and mid-central events compared with other experiments. Errors are statistical+systematic.
We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high $p_T$) in minimum bias and central d+Au collisions at $\sqrt{s_{NN}}$=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high $p_T$ previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.
Uncorrected charged particle multiplicity distributions measured in −3.8 < $\eta$ < −2.8 (Au-direction) for d+Au collisions. Points are for minimum bias (triangles) and peripheral (circles, ZDC-d single neutron) collisions. Both are normalized to the total number of d+Au collisions. Histograms are Glauber model calculations.
Inclusive $p_{T}$ distributions for minimum bias and central d+Au collisions, and non-singly diffractive p+p collisions. Hash marks at the top indicate bin boundaries for $p_{T}$ > 3.8 GeV/c.
$R_{AB}(p_{T})$ from Eq. 1 for minimum bias and central d+Au collisions, and central Au+Au collisions. The minimum bias d+Au data are displaced 100 MeV/c to the right for clarity. The error bars are the quadrature sum of the statistical and point-to-point systematic uncertainties. The bands show the normalization uncertainties, which are highly correlated point-to-point and between the two d+Au distributions.
We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.
$p$ differential yield. Systematic uncertainties are $\pm$10%.
$\bar{p}$ differential yield. Systematic uncertainties are $\pm$10%.
Rapidity distribution of $p$. Combined statitiscal uncertainty and systematic uncertainty from PID contramination. Systematic uncertainties from the track reconstruction efficiency are $\pm$25%.
Cross sections for e^+p charged current deep inelastic scattering at a centre-of-mass energy of 318 GeV have been determined with an integrated luminosity of 60.9pb^-1 collected with the ZEUS detector at HERA. The differential cross sections dsigma/dQ^2, dsigma/dx and dsigma/dy for Q^2>200 GeV^2 are presented. In addition, d^2sigma/dxdQ^2 has been measured in the kinematic range 280 GeV^2 < Q^2 < 17000 GeV^2 and 0.008 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson propagator is determined to be M_W=78.9 +/- 2.0 (stat.) +/- 1.8 (syst.) +2.0 -1.8 (PDF) GeV from a fit to dsigma/dQ^2. The chiral structure of the Standard Model is also investigated in terms of the (1-y)^2 dependence of the the double-differential cross section. The structure-function F_2^CC has been extracted by combining the measurements presented here with previous ZEUS results from e^-p scattering, extending the measurement obtained in a neutrino-nucleus scattering experiment to a significantly higher Q^2 region.
The total cross section for Q**2 > 200 GeV**2.
The differential cross section as a function of Q**2.
The differential cross section as a function of X.
Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.
Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.
The differential cross section as a function of X(NAME=POMERON).
The differential cross section as a function of transverse momentum.
We present the results of charged particle fluctuations measurements in Au + Au collisions at $\sqrt{s_{NN}}=130$ GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a HIJING model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.
Dynamical fluctuations, $ν_{+−,dyn}$, measured in $|\eta| ≤ 0.5$ as a function of the collision centrality estimated with the total (uncorrected) multiplicity, M, in $|\eta| < 0.75$. Only statistical errors are listed. Systematic errors estimated at $5\%$.
$\langle N\rangle ν_{+−,dyn}$ measured in $|\eta| ≤ 0.5$ vs M (opened circles) compared to the charge conservation limit (dotted line), resonance gas expectation based on ref.[5](solid line); and HIJING calculation (solid squares). Only statistical errors are listed. Systematic errors estimated at $10\%$.
Fluctuations $ν_{+−,dyn}$ for the $6\%$ most central collisions as a function of the range of integrated pseudorapidities. The expected limit due to charge conservation is shown as a dotted line.