Results are presented of a study of inclusive ηp and ηn interactions from threshold to 6 GeV. The data show a rapid approach to the distributions expected in the naive quark-parton model. The charged-current η deuteron total cross section is fit by the expression σ T ( η d) = (0.76 ± 0.03) × 10 −38 E η cm 2 per GeV per nucleon. For E η > 1.5 GeV, we measure σ T ( η n)/ σ T ( η p) = (2.02 ± 0.23). The distributions in the scaling variables x and y are given and discussed.
Measured charged current total cross section.
New data on the K−p elastic and charge exchange reactions are presented in the K− momentum range between 1.934 GeV/c and 2.516 GeV/c. A conventional energy-dependent partial-wave analysis covering the widerPK- range from 1.6 GeV/c to 2.516 GeV/c is presented together with a p.w.a. in which the duality ands-helicity conservation ideas are explicitly imposed in the fits. Finally the new Y*’s observed in this experiment are classified inSU3 multiplets.
No description provided.
No description provided.
No description provided.
We present cross sections for coherent and non-coherent production of one, two and three pions in pd reactions at 19 GeV/ c . The mass distributions of the two pion non-coherent channels are studied. Strong single Δ(1236) and also some double Δ production is observed. Clear evidence for ϱ production is seen.
SLOPE FITTED FOR -TP = 0.00 TO 0.14 GEV**2.
Results are presented for the hypercharge exchange reaction K − p→ f ′(1514) Λ at a beam momentum of 4.15 GeV/ c . Total and differential cross sections have been determined. The Λ polarization and the tensor meson density matrix elements are given as a function of t ′.
No description provided.
No description provided.
ALL EVENTS WITH 1.46<M(KS KS)<1.60GEV.
We have made the first measurement of the spin-spin correlation parameter CSS in pp elastic scattering at 6 GeV/c over the |t| range from 0.05 to 1.5 (GeV/c)2. The measured CSS data points are all negative, and their absolute values increase with |t|. The results are compared with some existing attempts to describe the pp scattering process.
NUMERICAL VALUES OBTAINED FROM AUTHORS. MAGNETIC FIELD ALIGNMENT AND APERTURE EFFECTS MEAN THAT QUANTITY ACTUALLY MEASURED IS 0.98 CSS + 0.02 CNN - 0.12 CSL. SEE LATER NUMBERS IN THE RECORD OF I. P. AUER ET AL., PL 70B, 475 (1977).
Neutron-neutron interactions have been observed at the CERN ISR with deutron colliding beams. The double - diffraction dissociation process →(p π p − )( pπ − ) has been measured with the Split Field Magnet at √ s = 26 GeV detecting all final state particles, including the two spectator protons. Mass and t distributions are presented and compared with corresponding spectra observed in single neutron diffraction in the same energy range with supporting evidence for factorization. The cross-section of the process is 11.5±2.8 μ b and can be directly related to the corresponding value for double diffraction dissociation of protons in the same energy range.
ERROR IS MOSTLY SYSTEMATIC. DEUTERON CORRECTIONS APPLIED.
No description provided.
Using the solenoidal magnetic detector PLUTO, we have measured the total cross section for e + e − annihilation into hadrons. Results are presented for center of mass energies between 3.6 and 4.8 GeV, and in the regions of the J ψ (3.1) and ψ(3.7) resonances. We also present results for the 2 prong cross section in the energy range 3.6 to 4.8 GeV.
No description provided.
NUMBERS MEASURED OFF PUBLISHED FIGURE. RADIATIVE CORRECTIONS HAVE BEEN APPLIED.
We present inclusive distributions for final-state hadrons produced in inelastic muon-proton scattering. Over the total energy range 2<W<4.7 GeV and the momentum-transfer range 0.3<Q2<4.5 GeV2, the fractional momentum and energy distributions approximately scale. Distributions in transverse momentum display an interesting two-component behavior. They show no dependence on the virtual-photon "mass squared" Q2, and have average values typical of other hadron-initiated reactions. A comparison of our distributions with those seen in e+e− annihilation and neutrino-nucleon scattering shows agreement, in support of quark-parton fragmentation ideas. We further break these distributions down by event topology.
No description provided.
No description provided.
No description provided.
We present the results of a bubble chamber study of the pure-isospinI = 0 reaction K−p → ωΛ at 7 incident momenta between 1.934 and 2.516 GeV/c. An energy-dependent partial-wave analysis in the c.m. energy range (2070 ÷ 2436) MeV including these new data confirms the coupling of theG7 Λ(2100) to this channel and yields evidence for the existence of a new resonant stateD3or P3 Λ(2325). A semi-energy-independent partial-wave analysis is also carried out, by means of all available data from the threshold of the K−p → ωΛ reaction up to 2436 MeV. This supplies clear and unambiguous evidence for the contribution of the knownP3 Λ(1860) and of the above-proposedD3 Λ(2325) to the ωΛ channel.
No description provided.
No description provided.
No description provided.
The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
No description provided.
No description provided.
No description provided.