Measurement of Differential Branching Fractions of Inclusive ${B \to X_u \, \ell^+\, \nu_{\ell}}$ Decays

The Belle collaboration Cao, L. ; Sutcliffe, W. ; Van Tonder, R. ; et al.
Phys.Rev.Lett. 127 (2021) 261801, 2021.
Inspire Record 1895149 DOI 10.17182/hepdata.131599

The first measurements of differential branching fractions of inclusive semileptonic ${B \to X_u \, \ell^+\, \nu_{\ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. Differential branching fractions are reported as a function of the lepton momentum, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic ${B \to X_c \, \ell^+\, \nu_{\ell}}$ decays and other processes, and corrected for resolution and acceptance effects. The measured distributions are compared to predictions from inclusive and hybrid ${B \to X_u \, \ell^+\, \nu_{\ell}}$ calculations.

0 data tables match query

Measurements of $q^2$ Moments of Inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ Decays with Hadronic Tagging

The Belle collaboration van Tonder, R. ; Cao, L. ; Sutcliffe, W. ; et al.
Phys.Rev.D 104 (2021) 112011, 2021.
Inspire Record 1917200 DOI 10.17182/hepdata.138985

We present the measurement of the first to fourth order moments of the four-momentum transfer squared, $q^2$, of inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ decays using the full Belle data set of 711 $\mathrm{fb}^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance where $\ell = e, \mu$. The determination of these moments and their systematic uncertainties open new pathways to determine the absolute value of the CKM matrix element $V_{cb}$ using a reduced set of matrix elements of the heavy quark expansion. In order to identify and reconstruct the $X_c$ system, we reconstruct one of the two $B$-mesons using machine learning techniques in fully hadronic decay modes. The moments are measured with progressively increasing threshold selections on $q^2$ starting with a lower value of 3.0 $\mathrm{GeV}^2$ in steps of 0.5 $\mathrm{GeV}^2$ up to a value of 10.0 $\mathrm{GeV}^2$. The measured moments are further unfolded, correcting for reconstruction and selection effects as well as QED final state radiation. We report the moments separately for electron and muon final states and observe no lepton flavor universality violating effects.

0 data tables match query

Version 2
Search for a heavy resonance decaying into a Z and a Higgs boson in events with an energetic jet and two electrons, two muons, or missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 089, 2025.
Inspire Record 2847311 DOI 10.17182/hepdata.153397

A search is presented for a heavy resonance decaying into a Z boson and a Higgs (H) boson. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded with the CMS experiment in the years 2016-2018. Resonance masses between 1.4 and 5 TeV are considered, resulting in large transverse momenta of the Z and H bosons. Final states that result from Z boson decays to pairs of electrons, muons, or neutrinos are considered. The H boson is reconstructed as a single large-radius jet, recoiling against the Z boson. Machine-learning flavour-tagging techniques are employed to identify decays of a Lorentz-boosted H boson into pairs of charm or bottom quarks, or into four quarks via the intermediate H $\to$ WW* and ZZ* decays. The analysis targets H boson decays that were not generally included in previous searches using the H $\to$$\mathrm{b\bar{b}}$ channel. Compared with previous analyses, the sensitivity for high resonance masses is improved significantly in the channel where at most one b quark is tagged.

0 data tables match query

Version 2
Search for vector-like leptons with long-lived particle decays in the CMS muon system in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 08 (2025) 156, 2025.
Inspire Record 2902874 DOI 10.17182/hepdata.156846

A first search is presented for vector-like leptons (VLLs) decaying into a light long-lived pseudoscalar boson and a standard model $τ$ lepton. The pseudoscalar boson is assumed to have a mass below the $τ^+τ^-$ threshold, so that it decays exclusively into two photons. It is identified using the CMS muon system. The analysis is carried out using a data set of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Selected events contain at least one pseudoscalar boson decaying electromagnetically in the muon system and at least one hadronically decaying $τ$ lepton. No significant excess of data events is observed compared to the background expectation. Upper limits are set at 95% confidence level on the vector-like lepton production cross section as a function of the VLL mass and the pseudoscalar boson mean proper decay length. The observed and expected exclusion ranges of the VLL mass extend up to 700 and 670 GeV, respectively, depending on the pseudoscalar boson lifetime.

0 data tables match query

Search for jet quenching with dijets from high-multiplicity pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 07 (2025) 118, 2025.
Inspire Record 2911293 DOI 10.17182/hepdata.156764

The first measurement of the dijet transverse momentum balance $x_j$ in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV is presented. The $x_j$ observable, defined as the ratio of the subleading over leading jet transverse momentum in a dijet pair, is used to search for jet quenching effects. The data, corresponding to an integrated luminosity of 174.6 nb$^{-1}$, were collected with the CMS detector in 2016. The $x_j$ distributions and their average values are studied as functions of the charged-particle multiplicity of the events and for various dijet rapidity selections. The latter enables probing hard scattering of partons carrying distinct nucleon momentum fractions $x$ in the proton- and lead-going directions. The former, aided by the high-multiplicity triggers, allows probing for potential jet quenching effects in high-multiplicity events (with up to 400 charged particles), for which collective phenomena consistent with quark-gluon plasma (QGP) droplet formation were previously observed. The ratios of $x_j$ distributions for high- to low-multiplicity events are used to quantify the possible medium effects. These ratios are consistent with simulations of the hard-scattering process that do not include QGP production. These measurements set an upper limit on medium-induced energy loss of the subleading jet of 1.26% of its transverse momentum at the 90% confidence level in high multiplicity pPb events.

0 data tables match query

Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2022) 067, 2022.
Inspire Record 2618188 DOI 10.17182/hepdata.106058

A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb−1. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements.

0 data tables match query

Search for heavy resonances and quantum black holes in e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 227, 2023.
Inspire Record 2081834 DOI 10.17182/hepdata.127302

A search is reported for heavy resonances and quantum black holes decaying into e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The e$\mu$, e$\tau$, and $\mu\tau$ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant $\tau$ sneutrino production in $R$ parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant $\tau$ sneutrinos are excluded for masses up to 4.2 TeV in the e$\mu$ channel, 3.7 TeV in the e$\tau$ channel, and 3.6 TeV in the $\mu\tau$ channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the e$\mu$ channel, up to 4.3 TeV in the e$\tau$ channel, and up to 4.1 TeV in the $\mu\tau$ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the e$\mu$ channel, 5.2 TeV in the e$\tau$ channel, and 5.0 TeV in the $\mu\tau$ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.

0 data tables match query

Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in $ZZ \to 4\ell$ events with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 12 (2023) 107, 2023.
Inspire Record 2709671 DOI 10.17182/hepdata.143611

A study of the polarisation and CP properties in $ZZ$ production is presented. The used data set corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The $ZZ$ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised $Z$ bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be $2.45 \pm 0.60$ fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings.

0 data tables match query

Measurement and interpretation of same-sign $W$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 04 (2024) 026, 2024.
Inspire Record 2729396 DOI 10.17182/hepdata.141650

This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.

0 data tables match query

Search for dark photons in rare $Z$ boson decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 131 (2023) 251801, 2023.
Inspire Record 2668340 DOI 10.17182/hepdata.140310

A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the Standard Model $Z$ boson is presented, using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark Higgs boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon's coupling to the dark Higgs boson times the kinetic mixing between the Standard Model photon and the dark photon, $\alpha_{D}\varepsilon^2$, in the dark photon mass range of $[5, 40]$ GeV except for the $\Upsilon$ mass window $[8.8, 11.1]$ GeV. This search explores new parameter space not previously excluded by other experiments.

0 data tables match query