A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range $5 \leq Q^2 \leq 185\gev^2$ and $160 \leq W \leq 250\gev$, where $Q^2$ is the virtuality of the photon and $W$ is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the $\gamma^*-$pomeron rest frame, on the mass of the hadronic final state, $M_X$. With increasing $M_X$ the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range $134-277$ GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the $\eta - \phi$ plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies $E^{jet}_T>14$ GeV are presented. The jet shape broadens as the jet pseudorapidity ($\eta^{jet}$) increases and narrows as $E^{jet}_T$ increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high $\eta^{jet}$ and low $E^{jet}_T$. The observed broadening of the jet shape as $\eta^{jet}$ increases is consistent with the predicted increase in the fraction of final state gluon jets.
Inclusive jet production. Data in different pseudorapidity ranges.
Inclusive jet production. Data in different pseudorapidity ranges.
Inclusive jet production. Data in different pseudorapidity ranges.
Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.
Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 6 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.
Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 8 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.
Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 11 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.
The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.
No description provided.
No description provided.
The value YRAP = 4PI is the extrapolation for 4PI acceptance.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
A thrust analysis of Large-Rapidity-Gap events in deep-inelastic ep collisions is presented, using data taken with the H1 detector at HERA in 1994. The average thrust of the final states X, which emerge from the dissociation of virtual photons in the range 10 < Q2 < 100 GeV2, grows with hadronic mass M_X and implies a dominant 2-jet topology. Thrust is found to decrease with growing Pt, the thrust jet momentum transverse to the photon-proton collision axis. Distributions of Pt2 are consistent with being independent of MX. They show a strong alignment of the thrust axis with the photon-proton collision axis, and have a large high-Pt tail. The correlation of thrust with MX is similar to that in e+e- annihilation at sqrt(see)=MX, but with lower values of thrust in the ep data. The data cannot be described by interpreting the dissociated system X as a qqbar state but inclusion of a substantial fraction of qqbarg parton configurations leads naturally to the observed properties. The soft colour exchange interaction model does not describe the data.
PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).
PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).
PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).
Charged particles ($h^\pm$) and \kz mesons have been studied in photoproduced events containing at least one jet of $E_T > 8$ GeV in a pseudorapidity interval (--0.5, 0.5) in the ZEUS laboratory frame. Distributions are presented in terms of transverse momentum, pseudorapidity and distance of the particle from the axis of a jet. The properties of \hpm within the jet are described well using the standard settings of PYTHIA, but the use of the multiparton interaction option improves the description outside the jets. A reasonable overall description of the \kz behaviour is possible with PYTHIA using a reduced value of the strangeness suppression parameter. The numbers of $h^\pm$ and \kz within a jet as defined above are measured to be $3.25\pm0.02\pm0.28$ and $0.431\pm0.013\pm0.088$ respectively. Fragmentation functions are presented for $h^\pm$ and \kz in photoproduced jets; agreement is found with calculations of Binnewies et al. and, at higher momenta, with $p\bar p$ scattering and with standard PYTHIA. Fragmentation functions in direct photoproduced events are extracted, and at higher momenta give good agreement with data from related processes in $e^+e^-$ annihilation and deep inelastic $ep$ scattering.
Corrected multiplicities of charged particles and neutral K0 mesons per photoproduced jet.
Corrected distribution of charged particles per jet in events containing a hadron jet.
Corrected distribution of charged particles per jet in events containing a hadron jet.
Quasi-elastic (z >0.95) photo-production of psi' mesons has been observed at HERA for photon-proton centre-of-mass energies in the range 40 to 160 GeV. The psi' mesons were identified through their decays to l+l- and to J/psi pi+ pi-, where the J/psi subsequently decays to l+l-, the lepton l being either a muon or an electron. The cross-section for quasi-elastic photoproduction was measured to be [18.0 +- 2.8 (stat) +- 3.0(syst)] nb at a photon-proton centre-of-mass energy of 80 GeV. The ratio of the psi' to J/psi quasi-elastic cross-sections is 0.150 +- 0.027 (stat) +- 0.022 (syst).
Overall value for photoproduction cross section combining the different decay modes and data sample.. 1994 and 1995 data.. The second systematic error is from the branching ratio uncertainties.
Combined cross section from PSI(3685) --> J/PSI(1S) < E+ E- > PI+ PI- and PSI(3685) --> J/PSI(1S) < MU+ MU- > PI+ PI- modes using both the 1994 and 1995 data.. The second systematic error is from the branching ratio uncertainties.
Cross section from PSI(3685) --> J/PSI(1S) < E+ E- > PI+ PI- mode.
From a data sample of $9.98 {\mathrm{ pb^{-1}}}$ integrated luminosity, collected by DELPHI at a centre-of-mass energy of 172 GeV, 118 events were selected as W-pa
Overall total cross section.
Cross sections for different decay topologies.
Elastic and proton-dissociative rho0 photoproduction (gamma p-->rho0 p,gamma p -->rho0 N,with rho0-->pi+pi-) has been studied in ep interactions at HERA for gamma-p centre-of-mass energies in the range 50
Integrated elastic rho0 photoproduction cross section.
Integrated elastic pi+ pi- photoproduction cross section.
Differential T distribution. Statistical errors only.