Integral cross sections for the scattering of pions by protons into angles greater than 30° (lab) have been measured at a wide range of energies spanning the delta resonance using liquid hydrogen targets. Cross sections were measured for π+p scattering at 40 energies from 39.8 to 283.9 MeV and for π−p at 15 energies from 80.0 to 283.9 MeV. Comparisons with phase shift predictions from the Karlsruhe group show good agreement on resonance but significant deviations below 100 MeV.
The uncertainties shown include statistical and systematic contributions.
The uncertainties shown include statistical and systematic contributions.
Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.
Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Absolute π±p elastic scattering differential cross sections have been measured at five incident pion energies between 87 and 139 MeV. An active target of scintillator material (CH1.1) was used to detect recoil protons in coincidence with scattered pions. Pions were detected at forward angles between 27 and 98°c.m. where the low-energy recoil protons stop in the target. The cross sections, typically 5–10% lower than phase shift predictions for π+p and 10–20% lower for the π−p cross sections, are consistent with earlier measurements by this group.
No description provided.
No description provided.
No description provided.
The proton elastic form factors GEp(Q2) and GMp(Q2) have been extracted for Q2=1.75 to 8.83 (GeV/c)2 via a Rosenbluth separation to ep elastic cross section measurements in the angular range 13°≤θ≤90°. The Q2 range covered more than doubles that of the existing data. For Q2<4 (GeV/c)2, where the data overlap with previous measurements, the total uncertainties have been reduced to < 14% in GEp and < 1.5% in GMp. Results for GEp(Q2) are consistent with the dipole fit GD(Q2)=(1+Q2/0.71)−2, while those for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.92. Deviations from form factor scaling are observed up to 20%. The ratio Q2F2/F1 is observed to approach a constant value for Q2>3 (GeV/c)2. Comparisons are made to vector meson dominance, dimensional scaling, QCD sum rule, diquark, and constituent quark models, none of which fully characterize all the new data.
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Axis error includes +- 1.6/1.6 contribution (Point-to-point systematic error. The quadrature sum of the point-to-point uncertainties in all quantities which defined the cross section).
Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.
Magnetic form factors.
Electric form factors.
We present differential cross-sections for the electro-production of single charged pions from deuterium for a virtual photon mass squared −1.0 GeV2 and for pion nucleon masses in the range 1.23–1.68 GeV (the 1st and 2nd resonance regions). The data are compared with predictions from fits to hydrogen data.
FORWARD BINS.
No description provided.
No description provided.
The asymmetry in the scattering of π− mesons by polarized protons has been measured at 50 different momenta from 0.643 to 2.14 GeV/c. Results were obtained at values of cosθ ranging from approximately +0.9 to -0.95 in the c.m. system at each incident pion momentum. The pion beam was incident on a 7.6-cm-long crystal assembly of lanthanum magnesium nitrate, in which the hydrogen in the water of crystallization was polarized by the "solid effect." The total momentum spread of the beam was 10% (full width at half-height) and data were collected simultaneously in 4 momentum channels, each with 2½% full width at half-height. A gas Čherenkov counter was used to reject incoming electrons. Scattered particles were detected in scintillation counter arrays placed within the 10-cm gap of the polarized target magnet. Encoded information from each array was stored in the memory of a PDP-5 computer connected on-line to a fast electronic logic network. The computer was programmed to classify the events according to momentum and scattering angle and subdivide them into coplanar and noncoplanar categories. The latter provided a measure of the background. The results have been expressed in the form of an expansion in terms of first associated Legendre polynomial series and compared with the predictions of recent phase-shift solutions. It is concluded that although these analyses give satisfactory predictions of the general features of the results, no one solution gives complete agreement with the data above about 1.0 GeV/c.
No description provided.
No description provided.
No description provided.
Data are presented for the reaction ep → ep π 0 at a nominal momentum transfer squared of 1.0 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Differential cross sections have been measured for isobar masses in the range 1.19–1.73 GeV/ c 2 .
No description provided.
No description provided.
No description provided.
The polarization parameter for K + n charge exchange scattering has been measured at five momenta between 0.851 GeV/ c and 1.351 GeV/ c for centre of mass angles −0.8 < cos θ ∗ < 0.8 . Results from a phase shift analysis incorporating these results are presented. No Z ∗ resonances are observed.
No description provided.
No description provided.
No description provided.