Average total cross sections are given for neutrino charged current interactions at neutrino energies of 2.87 GeV and 9.05 GeV. The ratios 〈σ〉 〈E〉 are 0.69 ± 0.05 and 0.61 ± 0.06 in units of 10 −38 cm 2 /GeV nucleon, respectively The errors include both statistical and systematic uncertainties.
Measured charged current total cross section.
Measured charged current total cross section.
The inclusive η production cross section at the CERN ISR has been measured for p T values of up to 11 GeV/ c . We find that the η π 0 cross-section ratio has an average value of 0.55 ± 0.07 and varies little with p T .
No description provided.
Inclusive π 0 production at 90° has been studied at the ISR at s 1 2 = 52.7 and 62.4 GeV over the p T range from 7 to 15 GeV/ c . The two photons from π 0 decay yielded overlapping electromagnetic showers in the liquid-argon-Pb plate calorimeter detector system. Any direct photon production is included in these measurements. For large values of p T , the cross section is observed to decrease with p T more slowly than the p T −8 behaviour which has been observed at lower values of p T .
No description provided.
The ratio of π - to π + electroproduction cross sections from deuterium has been measured in the resonance region, at a four-momentum transfer squared close to −1.0 (GeV/ c ) 2 . Results in the forward direction are presented and a comparison is made with predictions based on SU(6) W and the Melosh transformation.
No description provided.
Final data on topological cross sections are presented. Inclusive single particle distributions for the reactionsK+p→ π±X at 32 GeV/c are discussed and compared with data at lower energies. Early scaling in the fragmentation regions is confirmed, while cross sections in th central region continue to rise with energy even faster than inpp interactions. Thex-andpT-dependence of the π+/π− ratio inK+p interactions is discussed and a comparison of reactionsK+p→ π±X andK−p→ π±X at 32 GeV/c is made in the context of constituent models. We also present transverse momentum distributions, show prominent seagull effects and study how they are influenced by resonance production.
.
.
.
After summarizing the properties of the socalled Dalitz Array (DA), which is a genuine characteristics of a resonance, we determine those of the well known ε, γ, andA2 resonances produced in theK−p→π+π−π0Λ final state at 4.2 Ge V/c. A tentative measurement of the DA of theA1 meson produced backwards in the reactionK−p→π+π+π−Σ− is also presented. The data for this analysis come from the high statistics (130 events/μb) experiment performed by the ACNO Collaboration.
FROM FITTING MOMENTS OF DALITZ SERIES WITH BREIT-WIGNER RESONANCE PLUS BACKGROUND. FOR -T < 1.0 GEV**2, CROSS SECTION IS 14 +- 2.5 MUB.
BACKWARD CROSS SECTION USING DALITZ SERIES.
We present measurements of the cross section for inclusive D and K meson production in e + e − annihilation in the center of mass energy range 3.6 to 5.8 GeV. D production accounts for most of the increase in the total cross section for hadron production in e + e − annihilation at energies above 4 GeV.
No description provided.
No description provided.
No description provided.
We present a systematic investigation of channel cross sections in K − p interactions at 32 GeV/ c . The energy dependence of these cross sections is discussed. We also investigate a few non-diffractive two-body reactions. The total cross sections of the two reactions K − p → K ∗− (890) p and K − p → K ∗− (1420) p have a markedly different energy behaviour. There is clear evidence for the reaction K − p → K ∗0 (890) N 0 (1688) ; its differnttial cross section exhibits a sharp forward slope of 24 ± 3 GeV −2 .
FROM AK0 P PI- FINAL STATE.
DOUBLE RESONANCE CHANNEL CROSS SECTIONS FROM BREIT-WIGNER FIT CORRECTED FOR BACKGROUND AND DIFFRACTIVE PROCESSES.
No description provided.
Data on inclusive jet production in the transverse-momentum (p⊥) range 0-8 GeV/c for 200-GeV/c p, π−, π+, K−, K+, and p¯ incident on a hydrogen target are presented. The jet cross section is fully corrected for losses and biases, and compared with the predictions of a model based on quantum chromodynamics. Both the absolute cross section and the inclusive charged-particle distributions inside and outside the jet are in qualitative agreement with the model.
No description provided.
No description provided.
No description provided.
We report experimental results on the cross section for the reaction e + e − → hadrons as a function of the total c.m. energy in the range W = 1.42–3.09 GeV. The results, combined with those already existing below the charm threshold, clearly indicate a structure for R ( W ) = α ( e + e − → hadrons)/ α ( e + e − → μ + μ − ) in that energy region.
THE ENERGY RANGES OF THE NEW DATA AND THE PREVIOUS (REVISED) DATA OVERLAP BETWEEN 1.9 AND 2.0 GEV. RADIATIVE CORRECTIONS HAVE BEEN APPLIED TO ALL DATA. THIS CROSS SECTION EXCLUDES TWO-BODY FINAL STATES.
AVERAGE CHARGED AND NEUTRAL MULTIPLICITY. QUOTED ERRORS ARE STATISTICAL ONLY.