We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.
The measured W and Z0 cross sections used to compute the ratio.
The measured ratios of W+-/Z0 cross sections, corrected for the branching ratios BR(W-->e-nue)=0.1073+-0.0025 and BR(Z0-->E+E-)=0.033632+-0.000059 (PDG 2000). The error given is the total error, but note that the 4.3pct error in the luminosity cancels completely in the ratio.
We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.
TTBAR production cross section from the combined electron+jet and muon+jet channels.
We measure the ttbar production cross section in ppbar collisions at sqrt{s}=1.96 TeV in the lepton+jets channel. Two complementary methods discriminate between signal and background, b-tagging and a kinematic likelihood discriminant. Based on 0.9 fb-1 of data collected by the D0 detector at the Fermilab Tevatron Collider, we measure sigma_ttbar=7.62+/-0.85 pb, assuming the current world average m_t=172.6 GeV. We compare our cross section measurement with theory predictions to determine a value for the top quark mass of 170+/-7 GeV.
The combined result for the TOP TOPBAR production cross section at top quark mass of 175 GeV.. The second DSYS error is the uncertainty on the luminosity.
The cross section for TOP TOPBAR production at the world average top quark mass of 172.6 GeV.. Errors contain both statistics and systematics.
We present a measurement of the fraction of inclusive $W$+jets events produced with net charm quantum number $\pm1$, denoted $W$+$c$-jet, in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using approximately 1~fb$^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron Collider. We identify the $W$+jets events via the leptonic $W$ boson decays. Candidate $W$+$c$-jet events are selected by requiring a jet containing a muon in association with a reconstructed $W$ boson and exploiting the charge correlation between this muon and $W$ boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of $W$+$c$-jet events in the inclusive $W$+jets sample for jet $p_{T}>20$ GeV and pseudorapidity $|\eta|<2.5$ to be 0.074$\pm0.019$(stat.)$\pm^{0.012}_{0.014}$(syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of $W$+$c$-jet events is estimated to be $2.5\times 10^{-4}$, which corresponds to a 3.5 $\sigma$ statistical significance.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (E NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (MU NU) channel for various jet PT ranges.
Measured value of the W+ charm jet to W+ jet cross sections for W decay into the (LEPTON NU) channel for various jet PT ranges.
We present a measurement of the top quark pair (ttbar) production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb-1 of data collected by the DO detector at the Fermilab Tevatron Collider. We select events in the dilepton final states ee, emu and mumu based on kinematical properties consistent with ttbar events. For a top quark mass of 175 GeV, we measure a top pair production cross section sigma(ttbar) = 8.6 +3.2-2.7 (stat) +/-1.1 (syst) +/-0.6 (lumi) pb, in good agreement with the standard model prediction.
TTBAR production cross section.
The central inclusive jet cross section has been measured using a successive-combination algorithm for reconstruction of jets. The measurement uses 87.3 pb^{-1} of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider during 1994-1995. The cross section, reported as a function of transverse momentum (pT>60 GeV) in the central region of pseudorapidity (|\eta|<0.5), exhibits reasonable agreement with next-to-leading order QCD predictions, except at low pT where the agreement is marginal.
The inclusive jet cross section as a function of PT.
We report a measurement of the differential cross section for W boson production as a function of its transverse momentum in proton-antiproton collisions at sqrt{s} = 1.8 TeV. The data were collected by the D0 experiment at the Fermilab Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of 85 pb^{-1}. The results are in good agreement with quantum chromodynamics over the entire range of transverse momentum.
Measurement of the PT distribution of W boson production for the W --> e nuchannel. The nominal PT is where the predicted function equals its mean value o ver the bin.
We report a new measurement of the pseudorapidity (eta) and transverse-energy (Et) dependence of the inclusive jet production cross section in pbar b collisions at sqrt(s) = 1.8 TeV using 95 pb**-1 of data collected with the DZero detector at the Fermilab Tevatron. The differential cross section d^2sigma/dEt deta is presented up to |eta| = 3, significantly extending previous measurements. The results are in good overall agreement with next-to-leading order predictions from QCD and indicate a preference for certain parton distribution functions.
Single Inclusive Jet Production Cross Section.
Single Inclusive Jet Production Cross Section.
Single Inclusive Jet Production Cross Section.
We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.
First and second errors correspond to uncorrelated (C=UNCORR) and correlated (C=CORR) uncertainties. Uncorrelated uncertainties include statistical and uncorrelated systematic uncertainties added in quadrature.
We present a search for electroweak production of single top quarks in $\approx 90$ $pb^{-1}$ of data collected with the DZero detector at the Fermilab Tevatron collider. Using arrays of neural networks to separate signals from backgrounds, we set upper limits on the cross sections of 17 pb for the s-channel process $p\bar{p} \to tb + X$, and 22 pb for the t-channel process $p\bar{p} \to tqb + X$, both at the 95% confidence level.
No description provided.