Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

5 data tables match query

The particle-level di-jet differential cross section. The systematic uncertainty on the data contains contributions from track finding efficiency, track transverse momentum resolution, calorimeter energy resolution, and unfolding uncertainties. For the theory, values are given for the underlying event and hadronization (UEH) correction uncertainty and the quadrature sum of the UEH and theoretical uncertainties. Both the UEH and theoretical uncertainties include contributions from factorization and renormalization scale uncertainties and PDF uncertainties. An 8.8% uncertainty common to all points due to the integrated luminosity determination is also present, but not included in the systematic values quoted below.

Values of gluon X1 and X2 obtained from the PYTHIA detector-level simulation for the same-sign di-jet topology compared to the gluon X distribution for inclusive jets. The inclusive distribution has been scaled down by a factor of 20 compared to the di-jet distributions.

Values of gluon X1 and X2 obtained from the PYTHIA detector-level simulation for the opposite-sign di-jet topology compared to the gluon X distribution for inclusive jets. The inclusive distribution has been scaled down by a factor of 20 compared to the di-jet distributions.

More…