Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

306 data tables

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.

More…

Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Phys.Rev.C 73 (2006) 045205, 2006.
Inspire Record 684005 DOI 10.17182/hepdata.12254

Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.

113 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton spin structure function g1(x,Q**2) for Q**2 from 0.15-GeV**2 to 1.6-GeV**2 with CLAS.

The CLAS collaboration Fatemi, R. ; Skabelin, A.V. ; Burkert, V.D. ; et al.
Phys.Rev.Lett. 91 (2003) 222002, 2003.
Inspire Record 621221 DOI 10.17182/hepdata.41917

Double-polarization asymmetries for inclusive $ep$ scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH$_3$ target in the CLAS detector. The polarized structure function $g_1(x,Q^2)$ was extracted throughout the nucleon resonance region and into the deep inelastic regime, for $Q^2 = 0.15 -1.64 $GeV$^2$. The contributions to the first moment $\Gamma_1(Q^2) = \int g_1(x,Q^2)dx$ were determined up to $Q^2=1.2$ GeV$^2$. Using a parametrization for $g_1$ in the unmeasured low $x$ regions, the complete first moment was estimated over this $Q^2$ region. A rapid change in $\Gamma_1$ is observed for $Q^2 < 1 $GeV$^2$, with a sign change near $Q^2 = 0.3 $GeV$^2$, indicating dominant contributions from the resonance region. At $Q^2=1.2$ GeV$^2$ our data are below the pQCD evolved scaling value.

8 data tables

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.15 to 0.22 GeV**2 obtained with a beam energy of 2.6 GeV.

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.6 to 1.10 GeV**2 obtained with a beam energy of 4.3 GeV.

The polarized structure function G1 as a function of Bjorken X for the Q**2range 0.15 to 0.27 GeV.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of inclusive spin structure functions of the deuteron with CLAS.

The CLAS collaboration Yun, J. ; Kuhn, S.E. ; Dodge, G.E. ; et al.
Phys.Rev.C 67 (2003) 055204, 2003.
Inspire Record 604799 DOI 10.17182/hepdata.41972

We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 \to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $\Delta$ resonance at these momentum transfers.

7 data tables

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.27to 0.39 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.39to 0.65 GeV**2.

The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.65to 1.3 GeV**2.

More…

Inclusive charged hadron production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 554 (2003) 105-114, 2003.
Inspire Record 605973 DOI 10.17182/hepdata.48854

Inclusive charged hadron production, e+e- -> e+e- h+- X, is studied using 414 pb-1 of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Single particle inclusive differential cross sections are measured as a function of the particle transverse momentum, pt, and pseudo-rapidity, eta. For p_t &lt; 1.5 GeV, the data are well described by an exponential, typical of soft hadronic processes. For higher pt, the onset of perturbative QCD processes is observed. The pi+- production cross section for pt > 5 GeV is much higher than the NLO QCD predictions.

4 data tables

Transverse momentum distribution for inclusive charged hadron production.

Transverse momentum distributions for charged pion and charged kaon production separately.

Transverse momentum distributions for charged pion production with different W (effective mass of the GAMMA GAMMA system) cuts.

More…

Inclusive jet cross sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 547 (2002) 164-180, 2002.
Inspire Record 593409 DOI 10.17182/hepdata.46572

Inclusive jet differential cross sections have been measured in neutral current deep inelastic e+p scattering for boson virtualities Q**2>125 GeV**2. The data were taken using the ZEUS detector at HERA and correspond to an integrated luminosity of 38.6 pb-1. Jets were identified in the Breit frame using the longitudinally invariant K_T cluster algorithm. Measurements of differential inclusive jet cross sections are presented as functions of jet transverse energy (E_T,jet), jet pseudorapidity and Q**2, for jets with E_T,jet>8 GeV. Next-to-leading-order QCD calculations agree well with the measurements both at high Q**2 and high E_T,jet. The value of alpha_s(M_Z), determined from an analysis of dsigma/dQ**2 for Q**2>500 GeV**2, is alpha_s(M_Z) = 0.1212 +/- 0.0017 (stat.) +0.0023 / -0.0031 (syst.) +0.0028 / -0.0027 (th.).

9 data tables

Inclusive jet cross section DSIG/DQ**2 for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DET for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DETARAP for jets of hadrons in the Breit frame.

More…

Measurement of high-Q**2 e- p neutral current cross sections at HERA and the extraction of xF3.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 28 (2003) 175-201, 2003.
Inspire Record 593481 DOI 10.17182/hepdata.46560

Cross sections for e^-p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of 318 GeV using an integrated luminosity of 15.9 pb^-1 collected with the ZEUS detector at HERA. Results on the double-differential cross-section d^2s/dxdQ^2 in the range 185 < Q^2 < 50000 GeV^2 and 0.0037 < x < 0.75, as well as the single-differential cross-sections ds/dQ^2, ds/dx and ds/dy for Q^2 > 200 GeV^2, are presented. To study the effect of Z-boson exchange, ds/dx has also been measured for Q^2 > 10000 GeV^2. The structure function xF_3 has been extracted by combining the e^-p results presented here with the recent ZEUS measurements of e^+p neutral current deep inelastic scattering. All results agree well with the predictions of the Standard Model.

32 data tables

Differential cross section DSIG/DQ**2.

Differential cross section DSIG/DX for two Q**2 regions.

Differential cross section DSIG/DY.

More…

Measurement of diffractive production of D*(2010)+- mesons in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 545 (2002) 244-260, 2002.
Inspire Record 588104 DOI 10.17182/hepdata.46583

Diffractive production of D*+-(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3 pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D*+-(2010) meson is reconstructed in the decay channel D*+ -> (D0 -> K-pi+) pi+ (+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.

9 data tables

Measurment of total diffractive cross section and ratio to inclusive DIS cross section.

Ratio of diffractive to inclusive D*+- production w.r.t. Q**2.

Ratio of diffractive to inclusive D*+- production w.r.t. W.

More…

Measurement of high-Q**2 charged current cross sections in e- p deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 539 (2002) 197-217, 2002.
Inspire Record 587371 DOI 10.17182/hepdata.46582

Cross sections for e-p charged current deep inelastic scattering have been measured at a centre-of-mass energy of 318 GeV with an integrated luminosity of 16.4 pb-1 using the ZEUS detector at HERA. Differential cross-sections d\sigma/dQ2, d\sigma/dx and d\sigma/dy are presented for Q2>200 GeV2. In addition, d2\sigma/dxdQ2 was measured in the kinematic range 280 GeV2 < Q2 < 30000 GeV2 and 0.015 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson, determined from a fit to d\sigma/dQ2, is MW=80.3 \pm 2.1 (stat.) \pm 1.2 (syst.) \pm 1.0 (PDF) GeV.

10 data tables

The differential cross section DSIG/DQ**2.

The differential cross section DSIG/DX.

The differential cross section DSIG/DY.

More…