Cross sections for π0 photoproduction from hydrogen in the backward direction have been measured for photon energies of 6, 8, 12, and 18 GeV. The range of momentum transfer covered in these measurements is −1 (GeVc)2
No description provided.
No description provided.
No description provided.
Direct measurements were made of neutron-proton elastic scattering differential cross sections at high energies. A neutron beam with a continuous momentum spectrum between 1.2 and 6.7 GeV/c was scattered off a liquid hydrogen target, and spark chambers were used to determine the neutron scattering angle and, in a proton spectrometer, to measure the momentum and scattering angle of the recoil proton. Differential cross sections are presented over the incident neutron momentum range in intervals of the order of 0.5-GeV/c wide. The cross sections have an exponential peak in the forward direction and then flatten and become isotropic about the 90° c.m. scattering angle. At larger angles, the cross sections again rise towards the expected charge-exchange peak, which was not within the range of this experiment. There is little evidence of any other structure in the cross section. Values are presented for the slope of the diffraction peak, and comparisons are made between these slopes, and the 90° c.m. cross sections, for pp and np elastic scattering. The results presented here differ from those previously reported because of an error in a Monte Carlo calculation and in the availability of improved data on the real part of the np elastic scattering amplitude. At 5 GeV/c, a direct comparison of pp and np data allows the I=0 differential cross section to be extracted. The np data have been fitted in powers of cosθc.m. for |cosθc.m.|<0.8 for each energy range.
No description provided.
No description provided.
No description provided.
Cross sections for inelastic scattering of electrons from hydrogen were measured for incident energies from 7 to 17 GeV at scattering angles of 6° to 10° covering a range of squared four-momentum transfers up to 7.4 (GeV/c)2. For low center-of-mass energies of the final hadronic system the cross section shows prominent resonances at low momentum transfer and diminishes markedly at higher momentum transfer. For high excitations the cross section shows only a weak momentum-transfer dependence.
Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).
Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).
Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).
None
No description provided.
No description provided.
No description provided.
The interference between K L → π + π - and K S → π + π - behind a copper regenerator has been observed in a high statistics experiment. The modulus and the argument of the complex ratio ϱ ( p )/ η +- , where ϱ ( p ) is the regeneration amplitude and η +- = A ( K L → π + π - )/ A (K S → π + π - ) has been measured over the momentum interval from 2.0 GeV/ c to 6.0 GeV/ c . The phase of η +- as deduced from this measurement and from the optical model value of arg [ ϱ ( p )] is 49.3° ± 6.8°. The K L K S mass difference has been found to be Δm/ h ̵ = (0.555 ± 0.020) × 10 10 sec −1 .
No description provided.
Electron-proton elastic scattering cross sections have been measured at the Stanford Linear Accelerator Center at four-momentum transfers squared (q 2 ) of 1.0, 1.5, 2.0, 2.5and 3.75 (GeV/ c ) 2 . The angular distributions at q 2 = 2.5 and 3.75 (GeV/ c ) 2 are sufficient to provide values of the ratio G E / G M independent of the results from other laboratories. Our results are compatible with scaling, G E (q 2 ) = G M (q 2 )/ μ , within the experimental errors.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
In the reaction p p → 3π + 3π − 2227 events, and in the reaction p p → 3π + 3π − π 0 6578 events have been analyzed. The general characteristics of the reactions, such as total cross sections, angular and momentum distributions, the production of ϱ, f, ω and η mesons, and angular correlations are presented.
No description provided.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
The asymmetry Σ(k,θ*)=(dσ⊥−dσ∥)(dσ⊥+σ∥) of the polarized cross sections for π0 photoproduction has been measured at θ*=90° for energies k of the incident photon in the range 230-380 MeV. The experiment has been performed with the polarized γ-ray beam of the Frascati 1-GeV electron synchrotron. The experimental results are compared with the present theoretical predictions in order to investigate the importance of ω exchange in the t channel and the contribution of the E1+(3) multipole at the 33 resonance. The theory with ω exchange is in the best agreement with the experiment.
No description provided.
Differential cross sections for the reactions e−+p→e−+p+π0 and e−+p→e−+n+π+ have been measured near the Δ(1236) resonance at four-momentum transfers of 0.05, 0.13, 0.25, and 0.4 (GeV/c)2. A few measurements of the π+ angular distribution have been obtained at a four-momentum transfer of 0.6 (GeV/c)2. Cross sections for the π0 reaction are compared with dispersion-theory predictions at several pion-nucleon c.m. energies for each four-momentum transfer. A phenomenological analysis of the π0 results leads to the determination of the magnetic dipole and electric quadrupole partial-wave amplitudes and the γNΔ transition form factor. Evidence is found for the existence of a significant scaler-transverse interference term in the cross section, which is tentatively associated with the resonant scaler quadrupole interaction. Cross sections for π+ electroproduction are compared with dispersion theories using the pion form factor as a free parameter. The results suggest a form factor similar to that of the proton. A fit to the form-factor results, using the ρ-dominance model, requires mρ=560±80 MeV. The rms pion charge radius is estimated to be 〈r2〉12=0.86±0.14 F.
No description provided.
No description provided.
No description provided.