Date

Subject_areas

Measurement of the Cross Section for Direct-Photon Production in Association with a Heavy Quark in $p\bar{p}$ Collisions at $\sqrt{s}$ = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Amerio, S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 111 (2013) 042003, 2013.
Inspire Record 1225278 DOI 10.17182/hepdata.61735

We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of $\sqrt{s}=1.96$ TeV proton-antiproton collisions corresponding to 9.1 fb$^{-1}$ of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron. The measurements are performed as a function of the photon transverse momentum, covering photon transverse momentum between 30 and 300 GeV, photon rapidities $|y^{\gamma}|<1.0$, heavy-quark-jet transverse momentum $p_{T}^{jet}>20$ GeV, and jet rapidities $|y^{jet}|<1.5$. The results are compared with several theoretical predictions.

2 data tables

The cross section for GAMMA BQUARK X production as a function of the transverse energy of the GAMMA.

The cross section for GAMMA CQUARK X production as a function of the transverse energy of the GAMMA.


Measurement of the inclusive isolated prompt photon cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.D 83 (2011) 052005, 2011.
Inspire Record 882463 DOI 10.17182/hepdata.57465

A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

3 data tables

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.


A study of the associated production of photons and b-quark jets in p-pbar collisions at sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 81 (2010) 052006, 2010.
Inspire Record 840503 DOI 10.17182/hepdata.64152

The cross section for photon production in association with at least one jet containing a $b$-quark hadron has been measured in proton antiproton collisions at $\sqrt{s}=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 340 pb$^{-1}$ collected with the CDF II detector. Both the differential cross section as a function of photon transverse energy $E_T^{\gamma}$, $d \sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet)/$d E_T^{\gamma}$ and the total cross section $\sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet/ $E_T^{\gamma}> 20$ GeV) are measured. Comparisons to a next-to-leading order prediction of the process are presented.

2 data tables

b + photon cross section as a function of photon ET.

b + photon total cross section for photon ET > 20 GeV.


Measurement of Cross Sections for b Jet Production in Events with a Z Boson in p-anti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 052008, 2009.
Inspire Record 806082 DOI 10.17182/hepdata.51885

A measurement of the $\bjet$ production cross section is presented for events containing a $Z$ boson produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|\eta|<1.5$ and are identified as $\bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+\bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $\eta$, $Z$-boson transverse momentum, number of jets, and number of $\bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.

6 data tables

Ratio of integrated Z0 + bjet cross section to inclusive Z0 production.

Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet ET.

Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet pseudorapidity.

More…

Measurement of the cross section for W-boson production in association with jets in ppbar collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 77 (2008) 011108, 2008.
Inspire Record 768579 DOI 10.17182/hepdata.42714

We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.

9 data tables

Measured ET differential cross section of the 1st jet in >= 1 JET plus W < E NU > events.

Measured ET differential cross section of the 2nd jet in >= 2 JET plus W < E NU > events.

Measured ET differential cross section of the 3rd jet in >= 3 JET plus W < E NU > events.

More…

Di-jet production in photon photon collisions at s(ee)**(1/2) = from 189-GeV to 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 31 (2003) 307-325, 2003.
Inspire Record 611415 DOI 10.17182/hepdata.49662

Di-jet producion is studied in collisions of quasi-real photons at e+e- centre- of-mass energies sqrt(s)ee from 189 to 209 GeV at LEP. The data were collected with the OPAL detector. Jets are reconstructed using an inclusive k_t clustering algorithm for all cross-section measurements presented. A cone jet algorithm is used in addition to study the different structure of the jets resulting from either of the algorithms. The inclusive di-jet cross-section is measured as a function of the mean transverse energy Etm(jet) of the two leading jets, and as a functiuon of the estimated fraction of the photon momentum carried by the parton entering the hard sub-process, xg, for different regions of Etm (jet). Angular distribution in di-jet events are measured and used to demonstrate the dominance of quark and gluon initiated processes in different regions of phase space. Furthermore the inclusive di-jet cross-section as a function of |eta(jet)| and |delta eta (jet)| is presented where eta(jet) is the jet pseudo-rapidity. Different regions of the xg+ -xg- -space are explored to study and control the influence of an underlying event. The results are compared to next-to-leading order perturbative QCD calculations and to the predictions of the leading order Monte Carlo generator PYTHIA.

21 data tables

The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are > 0.75.

The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are < 0.75.

The di-jet cross section as a function of the mean transverse energy of thedi-jet system for the full X(C=GAMMA+) and X(C=GAMMA-) region.

More…

Inclusive jet cross sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 547 (2002) 164-180, 2002.
Inspire Record 593409 DOI 10.17182/hepdata.46572

Inclusive jet differential cross sections have been measured in neutral current deep inelastic e+p scattering for boson virtualities Q**2>125 GeV**2. The data were taken using the ZEUS detector at HERA and correspond to an integrated luminosity of 38.6 pb-1. Jets were identified in the Breit frame using the longitudinally invariant K_T cluster algorithm. Measurements of differential inclusive jet cross sections are presented as functions of jet transverse energy (E_T,jet), jet pseudorapidity and Q**2, for jets with E_T,jet>8 GeV. Next-to-leading-order QCD calculations agree well with the measurements both at high Q**2 and high E_T,jet. The value of alpha_s(M_Z), determined from an analysis of dsigma/dQ**2 for Q**2>500 GeV**2, is alpha_s(M_Z) = 0.1212 +/- 0.0017 (stat.) +0.0023 / -0.0031 (syst.) +0.0028 / -0.0027 (th.).

9 data tables

Inclusive jet cross section DSIG/DQ**2 for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DET for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DETARAP for jets of hadrons in the Breit frame.

More…

Dijet photoproduction at HERA and the structure of the photon.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 23 (2002) 615-631, 2002.
Inspire Record 568665 DOI 10.17182/hepdata.46761

The dijet cross section in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb$^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$ and a photon-proton centre-of-mass energy in the range $134 < W_{\gamma p} < 277$ GeV. Each event contains at least two jets satisfying transverse-energy requirements of $E_{T}^{\rm jet1}>14$ GeV and $E_{T}^{\rm jet2}>11$ GeV and pseudorapidity requirements of $-1<\eta^{\rm jet1,2}<2.4$. The measurements are compared to next-to-leading-order QCD predictions. The data show particular sensitivity to the density of partons in the photon, allowing the validity of the current parameterisations to be tested.

24 data tables

Measured cross section as a function of COS(THETA*), where THETA* is the dijet angle in the parton-parton c.m. frame. The data are shown in two X(C=GAMMA) regions.

Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. -1 < ETARAP(JET1) < 0. -1 < ETARAP(JET2) < 0.

Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. 0 < ETARAP(JET1) < 1. -1 < ETARAP(JET2) < 0.

More…

Measurement of dijet production in neutral current deep inelastic scattering at high Q**2 and determination of alpha(s).

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 507 (2001) 70-88, 2001.
Inspire Record 553352 DOI 10.17182/hepdata.46870

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).

13 data tables

The differential dijet cross section dsig/dZP1.

The differential dijet cross section dsig/dlog10(x).

The differential dijet cross section dsig/dlog10(xi).

More…

Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Nucl.Phys.B 596 (2001) 3-29, 2001.
Inspire Record 534829 DOI 10.17182/hepdata.46889

Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

5 data tables

The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.

More…