Date

Measurement of the top quark mass with the ATLAS detector using $t\bar{t}$ events with a high transverse momentum top quark

The ATLAS collaboration Aad, G. ; Aakvaag, E. ; Abbott, B. ; et al.
Phys.Lett.B 867 (2025) 139608, 2025.
Inspire Record 2894561 DOI 10.17182/hepdata.158358

The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.

6 data tables

Values and uncertainties for the parameters of interest in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data. The parameters of interest are the top quark mass, $m_t$, and the ratio of the measured cross-section to the Standard Model expectation of the $t\bar{t}$ cross-section, $\mu$.

Post-fit central values and uncertaintes for the nuisance parameters (including MC stat uncertainty terms) used in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.

Covariance matrix for the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.

More…

Inclusive Search for Anomalous Single-Photon Production in MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Aldana, D. Andrade ; Arellano, L. ; et al.
FERMILAB-PUB-25-0055-PPD, 2025.
Inspire Record 2878293 DOI 10.17182/hepdata.158440

We present an inclusive search for anomalous production of single-photon events from neutrino interactions in the MicroBooNE experiment. The search and its signal definition are motivated by the previous observation of a low-energy excess of electromagnetic shower events from the MiniBooNE experiment. We use the Wire-Cell reconstruction framework to select a sample of inclusive single-photon final-state interactions with a final efficiency and purity of 7.0% and 40.2%, respectively. We leverage simultaneous measurements of sidebands of charged current $\nu_{\mu}$ interactions and neutral current interactions producing $\pi^{0}$ mesons to constrain signal and background predictions and reduce uncertainties. We perform a blind analysis using a dataset collected from February 2016 to July 2018, corresponding to an exposure of $6.34\times10^{20}$ protons on target from the Booster Neutrino Beam (BNB) at Fermilab. In the full signal region, we observe agreement between the data and the prediction, with a goodness-of-fit $p$-value of 0.11. We then isolate a sub-sample of these events containing no visible protons, and observe $93\pm22\text{(stat.)}\pm35\text{(syst.)}$ data events above prediction, corresponding to just above $2\sigma$ local significance, concentrated at shower energies below 600 MeV.

19 data tables

Fig. 2. The reconstructed shower energy. The individual signal and background event type categories added together form the unconstrained prediction.

Fig. 2. The constrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.

Fig. 2, Suppl. Fig. 5. The unconstrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.

More…

Enhanced Search for Neutral Current $\Delta$ Radiative Single-Photon Production in MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Aldana, D. Andrade ; Arellano, L. ; et al.
FERMILAB-PUB-25-0054-PPD, 2025.
Inspire Record 2878288 DOI 10.17182/hepdata.158441

We report results from an updated search for neutral current (NC) resonant $\Delta$(1232) baryon production and subsequent $\Delta$ radiative decay (NC $\Delta\rightarrow N \gamma$). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a $\Delta(1232)$ baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC $\Delta\rightarrow N \gamma$ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC $\Delta\rightarrow N \gamma$ events with and without final state protons, and allow independent scaling of both types of events, our data exclude explanations in which excess events have associated protons, and do not exclude explanations in which excess events have no associated protons.

15 data tables

The four bins correspond to WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ predictions. Systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Constrained Signal Channels Covariance Matrix and Signal And Constraining Channels Covariance Matrix tabs. This corresponds to Fig. 1 and Table III of the paper.

Covariance matrix showing constrained uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Pearson data statistical uncertainties have been included, and include small correlations due to events which can be selected by both WC and Pandora. The four bins are the WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ channels. This corresponds to Fig. 1 and Table II of the paper.

Four constraining channels. The four channels in order are NC $\pi^0 Np$, NC $\pi^0 0p$, $\nu_\mu$CC $Np$, and $\nu_\mu$CC $0p$. Each channel contains 15 bins from 0 to 1500 MeV of reconstructed neutrino energy, with an additional overflow bin. Unconstrained and constrained systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Signal And Constraining Channels Covariance Matrix tab. This corresponds to Fig. 6 of the Supplemental Material.

More…

Search for an Anomalous Production of Charged-Current $ν_e$ Interactions Without Visible Pions Across Multiple Kinematic Observables in MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Aldana, D. Andrade ; Arellano, L. ; et al.
Phys.Rev.Lett. 135 (2025) 081802, 2025.
Inspire Record 2861683 DOI 10.17182/hepdata.159762

This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of $1.11\times 10^{21}$ protons on target, a $70\%$ increase on past results. Two samples of electron neutrino interactions without visible pions are used, one with visible protons and one without any visible protons. The MicroBooNE data show reasonable agreement with the nominal prediction, with $p$-values $\ge 26.7\%$ when the two $ν_e$ samples are combined, though the prediction exceeds the data in limited regions of phase space. The data is further compared to two empirical models that modify the predicted rate of electron-neutrino interactions in different variables in the simulation to match the unfolded MiniBooNE low energy excess. In the first model, this unfolding is performed as a function of electron neutrino energy, while the second model aims to match the observed shower energy and angle distributions of the MiniBooNE excess. This measurement excludes an electron-like interpretation of the MiniBooNE excess based on these models at $> 99\%$ CL$_\mathrm{s}$ in all kinematic variables.

19 data tables

Fig. 2 top figure - Distributions of MC simulation compared with data for reconstructed neutrino energy in the 1$e$N$p$0$\pi$ signal channel, along with the LEE Signal Model 1. Only bins between 0.15 GeV and 1.55 GeV are released, as statistical tests are performed within this region. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 2, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).

Fig. 2 bottom figure - Distributions of MC simulation compared with data for reconstructed neutrino energy in the 1$e$0$p$0$\pi$ signal channel, along with the LEE Signal Model 1. Only bins between 0.15 GeV and 1.55 GeV are released, as statistical tests are performed within this region. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 2, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).

Fig. 3 top figure - Distributions of MC simulation compared with data for reconstructed shower energy in the 1$e$N$p$0$\pi$ signal channel, along with the LEE Signal Model 2. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 3, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).

More…

Observation of exotic $J/\psi\phi$ resonances in diffractive processes in proton-proton collisions

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
Phys.Rev.Lett. 134 (2025) 031902, 2025.
Inspire Record 2809344 DOI 10.17182/hepdata.153613

The first study of $J/ψϕ$ production in diffractive processes in proton-proton collisions is presented. The study is based on an LHCb dataset recorded at centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5 fb$^{-1}$. The data disfavour a nonresonant $J/ψϕ$ production but are consistent with a resonant model including several resonant states observed previously only in $B^+ \to J/ψϕK^+$ decays. The $χ_{c0}(4500)$ state is observed with a significance over $6σ$ and the $χ_{c1}(4274)$ is confirmed with a significance of more than $4σ$.

6 data tables

Total $J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.

$\chi_{c1}(4140) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.

$\chi_{c1}(4274) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.

More…

Comprehensive analysis of local and nonlocal amplitudes in the $B^0\rightarrow K^{*0}\mu^+\mu^-$ decay

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 09 (2024) 026, 2024.
Inspire Record 2795535 DOI 10.17182/hepdata.161096

A comprehensive study of the local and nonlocal amplitudes contributing to the decay $B^0\rightarrow K^{*0}(\to K^+\pi^-) \mu^+\mu^-$ is performed by analysing the phase-space distribution of the decay products. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 8.4fb$^{-1}$ collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient $C_9$, responsible for vector dimuon currents, exhibits a $2.1\sigma$ deviation from the Standard Model expectation. The Wilson Coefficients $C_{10}$, $C_{9}'$ and $C_{10}'$ are all in better agreement than $C_{9}$ with the Standard Model and the global significance is at the level of $1.5\sigma$. The model used also accounts for nonlocal contributions from $B^{0}\to K^{*0}\left[\tau^+\tau^-\to \mu^+\mu^-\right]$ rescattering, resulting in the first direct measurement of the $b s\tau\tau$ vector effective-coupling $C_{9\tau}$.

3 data tables

Signal parameter results. See Table 1 in README.pdf in the attached resources for an explicit mapping between text-based parameter names and their symbolic representations in the main paper.

Total covariance matrix including both statistical and systematic effects. See Sec. 5 in the main paper for a description of the dominant systematic uncertainties. See Table 1 in README.pdf in the attached resources for an explicit mapping between text-based parameter names and their symbolic representations in the main paper.

Statistical covariance matrix. See Table 1 in README.pdf in the attached resources for an explicit mapping between text-based parameter names and their symbolic representations in the main paper.


Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at $\sqrt{s}=7$ and 8 TeV

The ATLAS & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 261902, 2024.
Inspire Record 2789110 DOI 10.17182/hepdata.143309

A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.

1 data table

Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.


Version 2
Measurement of $Z$ boson production cross-section in $pp$ collisions at $\sqrt{s} = 5.02$ TeV

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 02 (2024) 070, 2024.
Inspire Record 2690798 DOI 10.17182/hepdata.147274

The first measurement of the $Z$ boson production cross-section at centre-of-mass energy $\sqrt{s} = 5.02\,$TeV in the forward region is reported, using $pp$ collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of $100 \pm 2\,\rm{pb^{-1}}$. The production cross-section is measured for final-state muons in the pseudorapidity range $2.0<\eta<4.5$ with transverse momentum $p_{\rm{T}}> 20\,\rm{GeV/}\it{c}$. The integrated cross-section is determined to be \[ \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} \] for the di-muon invariant mass in the range $60<M_{\mu\mu}<120\,\rm{GeV/}\it{c^{2}}$. This result and the differential cross-section results are in good agreement with theoretical predictions at next-to-next-to-leading order in the strong coupling. Based on a previous LHCb measurement of the $Z$ boson production cross-section in $p$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV, the nuclear modification factor $R_{p\rm{Pb}}$ is measured for the first time at this energy. The measured values are $1.2^{+0.5}_{-0.3}\,(\rm{stat}) \pm 0.1\,(\rm{syst})$ in the forward region ($1.53<y^*_{\mu}<4.03$) and $3.6^{+1.6}_{-0.9}\,(\rm{stat}) \pm 0.2\,(\rm{syst})$ in the backward region ($-4.97<y^*_{\mu}<-2.47$), where $y^*_{\mu}$ represents the muon rapidity in the centre-of-mass frame.

12 data tables

Systematic uncertainties on the single differential cross-sections in bins of $y^{Z}$, presented in percentage.

Systematic uncertainties on the single differential cross-sections in bins of $p_{T}^{Z}$, presented in percentage.

Systematic uncertainties on the single differential cross-sections in bins of $\phi_{\eta}^{*}$, presented in percentage.

More…

Search for quantum black hole production in lepton+jet final states using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 109 (2024) 032010, 2024.
Inspire Record 2682338 DOI 10.17182/hepdata.141896

A search for quantum black holes in electron+jet and muon+jet invariant mass spectra is performed with 140 fb$^{-1}$ of data collected by the ATLAS detector in proton-proton collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross-sections times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.

3 data tables

The 95% CL model-independent upper limits on $\sigma \times Br$ for the non-SM signal production with decay into the lepton+jet. The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the lower border of the SR (threshold of SR, Th$_\mathrm{SR}$), above which the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands of expected limits are shown in green and yellow, respectively. The limits are obtained with pseudo-experiments.

The combined 95% CL upper limits on $\sigma \times Br$ as a function of threshold mass, $M_\mathrm{th}$, for QBH production with decay into lepton+jet for ADD-model (extra dimensions n = 6). The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the mass $M_\mathrm{th}$ of the signal where the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands are shown in green and yellow, respectively. The theoretically predicted $\sigma \times Br$ for the QBH production and decay is shown as the solid blue curve with squares.

The combined 95% CL upper limits on $\sigma \times Br$ as a function of threshold mass, $M_\mathrm{th}$, for QBH production with decay into lepton+jet for RS1-model (extra dimensions n = 1). The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the mass $M_\mathrm{th}$ of the signal where the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands are shown in green and yellow, respectively. The theoretically predicted $\sigma \times Br$ for the QBH production and decay is shown as the solid blue curve with squares.


Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…