A Measurement of the b anti-b forward backward asymmetry using the semileptonic decay into muons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 276 (1992) 536-546, 1992.
Inspire Record 322498 DOI 10.17182/hepdata.29264

The forward-backward asymmetry of bottom quarks is measured with statistics of approximately 80 000 hadronic Z 0 decays produced in e + e − collisions at a centre of mass energy of √ s ≈ M z . The tagging of b quark events has been performed using the semileptonic decay channel b→X+ μ . Because the asymmetry depends on the weak coupling, this leads to a precise measurement of the electroweak mixing angle sin 2 θ w . The experimental result is A FB b = 0.115±0.043(stat.)±0.013(syst.). After correcting the value for the B 0 B 0 mixing this becomes A FB b =0.161±0.060(stat.)±0.021(syst.) corresponding to sin 2 θ W MS =0.221±0.011( stat. )±0.004( syst. ) .

3 data tables

Experimentally measured asymmetry.

Asymmetry corrected for mixing using mixing parameter 0.143 +- 0.023.

SIN2TW measured in MSBAR scheme.


Production of strange particles in the hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 275 (1992) 231-242, 1992.
Inspire Record 322503 DOI 10.17182/hepdata.29267

An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.


The reaction e+ e- ---> gamma gamma (gamma) at Z0 energies

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 268 (1991) 296-304, 1991.
Inspire Record 317825 DOI 10.17182/hepdata.29352

The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.

2 data tables

Radiative effects are subtracted.

Radiative effects subtracted.


A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

3 data tables

Fully corrected cross sections.

Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.

Effective weak mixing angle.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

18 data tables

Cross section from analysis I based on energy of charged particles. Additional 1.0 pct normalisation uncertainty.

Cross section from analysis II based on calorimeter energies. Additional 1.1 pct normalisation uncertainty.

Cross sections within the polar angle range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error 1.2 pct not included.

More…

Measurement of f(c --> D*+ X), f(b --> D*+ X) and Gamma(c anti-c)/Gamma(had) using D*+- mesons.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 1 (1998) 439-459, 1998.
Inspire Record 447145 DOI 10.17182/hepdata.47409

The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.

3 data tables

No description provided.

No description provided.

The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.


Measurement of the photon structure function F2(gamma) at low x.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 225-234, 1997.
Inspire Record 447187 DOI 10.17182/hepdata.49560

Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt{s_ee} ~ M_{Z^0}. The photon structure function F_2^gamma(x,Q^2) is explored in a Q^2 range of 1.1 to 6.6 GeV/c^2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F_2^gamma(x,Q^2) at <Q^2> = 1.86 GeV^2 and 3.76 GeV^2 in five logarithmic x bins from 0.0025 to 0.2.

2 data tables

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.


Particle multiplicity of unbiased gluon jets from e+ e- three jet events

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 23 (2002) 597-613, 2002.
Inspire Record 565517 DOI 10.17182/hepdata.49742

The charged particle multiplicities of two- and three-jet events from the reaction e+e- -> Z0 -> hadrons are measured for Z0 decays to light quark (uds) flavors. Using recent theoretical expressions to account for biases from event selection, results corresponding to unbiased gluon jets are extracted over a range of jet energies from about 11 to 30 GeV. We find consistency between these results and direct measurements of unbiased gluon jet multiplicity from upsilon and Z0 decays. The unbiased gluon jet data including the direct measurements are compared to corresponding results for quark jets. We perform fits based on analytic expressions for particle multiplicity in jets to determine the ratio r = Ng/Nq of multiplicities between gluon and quark jets as a function of energy. We also determine the ratio of slopes, r(1) = (dNg/dy)/(dNq/dy), and of curvatures, r(2) = (d2Ng/dy2)/(d2Nq/dy2), where y specifies the energy scale. At 30 GeV, we find r = 1.422 +/- 0.051, r(1) = 1.761 +/- 0.071 and r(2) = 1.98 +/- 0.13, where the uncertainties are the statistical and systematic terms added in quadrature. These results are in general agreement with theoretical predictions. In addition, we use the measurements of the energy dependence of Ng and Nq to determine an effective value of the ratio of QCD color factors, CA/CF. Our result, CA/CF = 2.23 +/- 0.14 (total), is consistent with the QCD value of 2.25.

4 data tables

Measurements of the mean charged particle multiplicity of biased two-jet uds flavour events from Z0 decays as a function of the transverse momentum cutoff PT(C=LU) used to separate two- and three-jet events.

Measurements of the mean charged particle multiplicity of three-jet uds flavour 'Y events' from Z0 decays, as a function of the angle THETA1 between the lowest two energy jets. The results for the quark jet scale SQRT(S(C=QQBAR)) and the gluon jet scales PT(C=LU) and PT(C=LE) are also given.

Measurements of the unbiased gluon multiplicity as a function of the energy scale Q=PT(C=LU). The corresponding bins of THETA1 in 'Y events' are also indicated.

More…

Analysis of hadronic final states and the photon structure function F2(gamma) in deep inelastic electron photon scattering at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 33-48, 1997.
Inspire Record 426209 DOI 10.17182/hepdata.47770

Deep inelastic electron-photon scattering is studied in the Q2 ranges from 6 to 30 GeV2 and from 60 to 400 GeV2 using the full sample of LEP data taken with the OPAL detector at centre-of-mass energies close to the Z0 mass, with an integrated luminosity of 156.4 pb−1. Energy flow distributions and other properties of the measured hadronic final state are compared with the predictions of Monte Carlo models, including HERWIG and PYTHIA. Sizeable differences are found between the data and the models, especially at low values of the scaling variable x. New measurements are presented of the photon structure function $F_2^{αmma }(x,Q^2)$, allowing for the first time for uncertainties in the description of the final state by different Monte Carlo models. The differences between the data and the models contribute significantly to the systematic errors on $F_2^{αmma }$. The slope ${⤪ d}(F_2^{αmma }/←pha )/{⤪ d ln} Q^2$ is measured to be $0.13_{-0.04}^{+0.06}$.

5 data tables

No description provided.

No description provided.

No description provided.

More…