Date

Collaboration Reset

Subject_areas

Measurement of $t\bar{t}$ production in association with additional $b$-jets in the $e\mu$ final state in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 01 (2025) 068, 2025.
Inspire Record 2809112 DOI 10.17182/hepdata.153521

This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.

210 data tables match query

Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.

Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.

Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.

More…

Search for same-charge top-quark pair production in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 084, 2025.
Inspire Record 2832100 DOI 10.17182/hepdata.155341

A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\%$ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.

15 data tables match query

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

More…

Search for a heavy charged Higgs boson decaying into a $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 143, 2025.
Inspire Record 2846106 DOI 10.17182/hepdata.156777

This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.

31 data tables match query

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.

Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.

More…

Version 2
Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

49 data tables match query

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the transverse momentum of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Search for Higgs boson decays into a pair of pseudoscalar particles in the $\gamma\gamma\tau_{\text{had}}\tau_{\text{had}}$ final state using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 03 (2025) 190, 2025.
Inspire Record 2861061 DOI 10.17182/hepdata.157781

A search for exotic decays of the 125 GeV Higgs boson into a pair of new spin-0 particles, $H \to aa$, where one decays into a photon pair and the other into a $\tau$-lepton pair, is presented. Hadronic decays of the $\tau$-leptons are considered and reconstructed using a dedicated tagger for collimated $\tau$-lepton pairs. The search uses 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider. The search is performed in the mass range of the $a$ boson between 10 GeV and 60 GeV. No significant excess of events is observed above the Standard Model background expectation. Model-independent upper limits at 95$\% $ confidence level are set on the branching ratio of the Higgs boson to the $\gamma\gamma\tau\tau$ final state, $\mathcal{B}(H\to aa\to \gamma\gamma\tau\tau)$, ranging from 0.2$\% $ to 2$\% $, depending on the $a$-boson mass hypothesis.

5 data tables match query

Distribution of the diphoton invariant mass for all events satisfying the analysis selections in the full Run 2 dataset.

Scan of the observed $p$-value as a function of $m_{a}$ for the background-only hypothesis.

The observed and expected ($\pm1\sigma$) upper limits at 95% CL on the branching ratio for $H\rightarrow aa\rightarrow \gamma\gamma\tau\tau$ as a function of the resonance mass hypothesis $m_{a}$.

More…

Search for supersymmetry using vector boson fusion signatures and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 116, 2024.
Inspire Record 2835159 DOI 10.17182/hepdata.156776

This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.

12 data tables match query

Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.

More…

Version 2
Search for a light CP-odd Higgs boson decaying into a pair of $\tau$-leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 126, 2024.
Inspire Record 2836178 DOI 10.17182/hepdata.153948

This paper reports a search for a light CP-odd scalar resonance with a mass of 20 GeV to 90 GeV in 13 TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider. The analysis assumes the resonance is produced via gluon-gluon fusion and decays into a $\tau^{+}\tau^{-}$ pair which subsequently decays into a fully leptonic $\mu^{+}\nu_{\mu} \bar{\nu}_{\tau} e^{-} \bar{\nu}_{e} \nu_{\tau}$ or $e^{+}\nu_{e}\bar{\nu}_{\tau} \mu^-\bar{\nu}_{\mu}\nu_{\tau}$ final state. No significant excess of events above the predicted Standard Model background is observed. The results are interpreted within a flavour-aligned two-Higgs-doublet model, and a model-independent cross-section interpretation is also given. Upper limits at 95$%$ confidence level between 3.0 pb and 68 pb are set on the cross-section for producing a CP-odd Higgs boson that decays into a $\tau^+\tau^-$ pair.

2 data tables match query

Post-fit $m_\mathrm{MMC}$ distribution in the low-mass SR for the $m_A = 20\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. Total includes all backgrounds and the signal process. The low-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 0.7$ - $E_\mathrm{T}^\mathrm{miss} > 50\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 45\,\mathrm{GeV}$ - $m_\mathrm{MMC} > 0\,\mathrm{GeV}$

Post-fit $m_\mathrm{MMC}$ distribution in the low-mass SR for the $m_A = 20\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. Total includes all backgrounds and the signal process. The low-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 0.7$ - $E_\mathrm{T}^\mathrm{miss} > 50\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 45\,\mathrm{GeV}$ - $m_\mathrm{MMC} > 0\,\mathrm{GeV}$


Differential cross-section measurements of Higgs boson production in the $H\to\tau^+\tau^-$ decay channel in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 03 (2025) 010, 2025.
Inspire Record 2810563 DOI 10.17182/hepdata.157351

Differential measurements of Higgs boson production in the $\tau$-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF), $VH$ and $t\bar{t}H$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb$^{-1}$ of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: the Simplified Template Cross-Section (STXS) approach and an Unfolded Fiducial Differential measurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson's transverse momentum ($p^{\text{H}}_\text{T}$), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets ($m_{jj}$). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction for $m_{jj}>1.5$ TeV and $p^{\text{H}}_\text{T}>200$ GeV ($p^{\text{H}}_\text{T}<200$ GeV) is ${1.29}^{+0.39}_{-0.34}$ (${0.12}^{+0.34}_{-0.33}$). This is the first VBF measurement for the higher-$p^{\text{H}}_\text{T}$ criteria, and the most precise for the lower-$p^{\text{H}}_\text{T}$ criteria. The fiducial cross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed $\Delta\phi_{jj}$ between the two leading jets. The measurements have a precision of 30%-50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient $c_{H\tilde{W}}$.

32 data tables match query

Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.

Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}>200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.

Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_1 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.

More…

Search for long-lived charged particles using large specific ionisation loss and time of flight in 140 $fb^{-1}$ of $pp$ collisions at $\sqrt{s}\ = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 07 (2025) 140, 2025.
Inspire Record 2878503 DOI 10.17182/hepdata.158643

This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of 140 $fb^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime.

62 data tables match query

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

More…

Differential cross-section measurements of $D^{\pm}$ and $D_{s}^{\pm}$ meson production in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 07 (2025) 086, 2025.
Inspire Record 2862073 DOI 10.17182/hepdata.155981

The production of $D^{\pm}$ and $D_{s}^{\pm}$ charmed mesons is measured using the $D^{\pm}/D_{s}^{\pm} \to ϕ(μμ)π^{\pm}$ decay channel with 137 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider during the years 2016-2018. The charmed mesons are reconstructed in the range of transverse momentum $12 < p_\mathrm{T} < 100$ GeV and pseudorapidity $|η| < 2.5$. The differential cross-sections are measured as a function of transverse momentum and pseudorapidity, and compared with next-to-leading-order QCD predictions. The predictions are found to be consistent with the measurements in the visible kinematic region within the large theoretical uncertainties.

6 data tables match query

The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.

The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $p_T$ for $|\eta| < 2.5$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.

The measured differential cross-sections and the predictions from the GM-VFNS calculation for the $D_s^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS.

More…