Production of prompt J/$\psi$ meson pairs in proton-proton collisions at $\sqrt{s}$ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 inverse-femtobarns. The two J/$\psi$ mesons are fully reconstructed via their decays into $\mu^+\mu^-$ pairs. This observation provides for the first time access to the high-transverse-momentum region of J/$\psi$ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/$\psi$ transverse momentum ($p_T^{J/\psi}$) and rapidity (|$y^{J/\psi}$|): |$y^{J/\psi}$| lower than 1.2 for $p_T^{J/\psi}$ greater than 6.5 GeV/c; |$y^{J/\psi}$| in [1.2,1.43] for a $p_T$ threshold that scales linearly with |$y^{J/\psi}$| from 6.5 to 4.5 GeV/c; and |$y^{J/\psi}$| in [1.43,2.2] for $p_T^{J/\psi}$ greater than 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/$\psi$ pair production is 1.49 $\pm$ 0.07 (stat.) $\pm$ 0.13 (syst.) nb. Different assumptions about the J/$\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.
Differential cross section D(SIG)/DM(J/PSI J/PSI) in bins of the J/PSI pair invariant mass, M(J/PSI J/PSI).
Differential cross section D(SIG)/DABS(DELTA(YRAP)) in bins of the absolute rapidity difference between J/PSI mesons, ABS(DELTA(YRAP)).
Differential cross section D(SIG)/DPT(J/PSI J/PSI) in bins of the transverse momentum of the J/PSI pair, PT(J/PSI J/PSI).
Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0 < |y| < 0.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0.5 < |y| < 1. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 1 < |y| < 1.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
A measurement of inclusive ZZ production cross section and constraints on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV are presented. A data sample, corresponding to an integrated luminosity of 19.6 inverse femtobarns was collected with the CMS experiment at the LHC. The measurements are performed in the leptonic decay modes ZZ to lll'l', where l = e, mu and l' = e, mu, tau. The measured total cross section, sigma(pp to ZZ) = 7.7 +/- 0.5 (stat.) +0.5-0.4 (syst.) +/- 0.4 (theo.) +/- 0.2 (lum.) pb for both Z bosons produced in the mass range 60 < m[Z] < 120 GeV, is consistent with standard model predictions. Differential cross sections are measured and well described by the theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ gamma couplings at the 95% confidence level: -0.004 < f[4,Z] < 0.004, -0.004 < f[5,Z] < 0.004, -0.005 < f[4,gamma] < 0.005, and -0.005 < f[5,gamma] < 0.005.
The total ZZ production cross section (P P --> Z0 Z0 X, 60GeV < mll < 120GeV) as measured in each decay channel and for the combination of all channels. The first systematic uncertainty is detector systematics, second is theoretical systematics and the third is luminosity systematic uncertainty.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the highest pT lepton in the event.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the Z1, where Z1 is defined as highest pT Z candidate.
A search for squarks and gluinos in final states containing high-$p_{\rm T}$ jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in $\sqrt{s}=8$ TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of $20.3 \mathrm{fb}^{-1}$. No significant excess above the Standard Model expectation is observed. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with $\tan\beta=30$, $A_0=-2m_0$ and $\mu> 0$, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
The effective mass distribution in 2-jet loose signal region.
The effective mass distribution in 2-jet medium and tight signal regions.
The effective mass distribution in 2-jet (W) signal region.
In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, $x_\gamma^{\mathrm{meas}}$, contributing to the photon-jet final state. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges $6 < E_T^{\gamma} < 15$ GeV and $-0.7 < \eta^{\gamma} < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{\rm jet} < 35$ GeV and $-1.5 < \eta^{\rm jet} < 1.8$, for an integrated luminosity of 374 $\mathrm{pb}^{-1}$. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.
Differential cross-section D(SIG)/DET(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.
Differential cross-section D(SIG)/DETARAP(GAMMA) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.
Differential cross-section D(SIG)/DET(JET) for photons in the given X(GAMMA) range accompanied by a jet. The corresponding hadronisation corrections are also given.
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at sqrt(s) = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range abs(eta) < 2.5, abs(eta) not in [1.44,1.57] and with an angular separation Delta R > 0.45, is 17.2 +/- 0.2 (stat.) +/- 1.9 (syst.) +/- 0.4 (lum.) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
Values of D(SIG)/DM(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.
Values of D(SIG)/DPT(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.
Values of D(SIG)/DDELTA(PHI(GAMMA GAMMA)) (pb/rad) for the data. The error given on each value is the total uncertainty.
The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q^2 < 1000 GeV^2 using an integrated luminosity of 354 pb^{-1}. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q^2, Bjorken x, jet transverse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q^2. The running beauty-quark mass, m_b at the scale m_b, was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be 4.07 \pm 0.14 (fit} ^{+0.01}_{-0.07} (mod.) ^{+0.05}_{-0.00} (param.) ^{+0.08}_{-0.05} (theo) GeV.
Differential cross sections for inclusive jet production in beauty events as a function of ET(JET) for ET(JET) > 5 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.
Differential cross sections for inclusive jet production in charm events as a function of ET(JET) for ET(JET) > 4.2 GeV. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.
Differential cross sections for inclusive jet production in beauty events as a function of ETARAP(JET) for -1.6 < ETARAP(JET) < 2.2. The measurements are given together with their statistical and systematic uncertainties. Hadronisation and QED radiative corrections, CHAD and CRAD, respectively, are also shown.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
We present measurements of elliptic flow ($v_2$) of electrons from the decays of heavy-flavor hadrons ($e_{HF}$) by the STAR experiment. For Au+Au collisions at $\sqrt{s_{\rm NN}} = $ 200 GeV we report $v_2$, for transverse momentum ($p_T$) between 0.2 and 7 GeV/c using three methods: the event plane method ($v_{2}${EP}), two-particle correlations ($v_2${2}), and four-particle correlations ($v_2${4}). For Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 62.4 and 39 GeV we report $v_2${2} for $p_T< 2$ GeV/c. $v_2${2} and $v_2${4} are non-zero at low and intermediate $p_T$ at 200 GeV, and $v_2${2} is consistent with zero at low $p_T$ at other energies. The $v_2${2} at the two lower beam energies is systematically lower than at $\sqrt{s_{\rm NN}} = $ 200 GeV for $p_T < 1$ GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to $\sqrt{s_{\rm NN}} = 200$ GeV.
Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 200 GeV, 0-60% central events with minimum bias trigger
Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 200 GeV, 0-60% central events with with High Tower (high pT) trigger
Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 39 GeV, 0-60% central events with minimum bias trigger
This Letter presents the first study of $W^{\pm}W^{\pm}jj$, same-electric-charge diboson production in association with two jets, using 20.3 fb$^{-1}$ of proton--proton collision data at $\sqrt{s}=8$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two reconstructed same-charge leptons ($e^\pm e^\pm$, $e^\pm \mu^\pm$, and $\mu^\pm \mu^\pm$) and two or more jets are analyzed. Production cross sections are measured in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. First evidence for $W^{\pm}W^{\pm}jj$ production and electroweak-only $W^{\pm}W^{\pm}jj$ production is observed with a significance of $4.5$ and $3.6$ standard deviations respectively. The measured production cross sections are in agreement with Standard Model predictions. Limits at 95% confidence level are set on anomalous quartic gauge couplings.
The fiducial cross sections for the production of W+- W+- JET JET in the inclusive and VBS regions.