The cross section for the 12C(γ, π+ p) reaction was measured in the range of the Δ(1232) isobar. The data were analyzed using the models taking into account the nucleon and isobaric degrees of freedom of the 12C nucleus. The conclusion is drawn that in the large-momentum transfer range the π+ p pairs are produced in the course of the direct knocking-out of Δ++ isobar from the nucleus. The probability of finding the Δ isobar in the ground-state 12C nucleus is estimated at 0.018±0.005 Δ isobars per nucleon.
The accuracy of the proton energy measurement = 4 MeV. The accuracy of the proton angles: DTHETA = 3 deg and DPHI = 2 deg. The background events < 3 pct for 450 MeV GAMMA energy (500 MeV of electron energy) and negligible for 400 MeV beam (420 MeV of electron energy). The estimation of the probability of finding DELTA in the ground state of C12 nucleus equals 0.018 +- 0.005 DELTA/nucleon.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
In photoproduction experiments, a large number of final states yielding various resonance contributions are accessible. To extract resonance parameters via partial-wave analysis not only the measurement of differential cross-sections is necessary, but also the determination of polarization observables. At the electron accelerator ELSA (Bonn) the coherent bremsstrahlung method was used to generate a linearly polarized photon beam. Using the CBELSA/TAPS detector setup, the beam asymmetry Σ in the reaction γp → pπ 0 η was determined as a function of various masses and angles for photon energies between 970MeV and 1650MeV.
Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 0.970 to 1.200 GeV.
Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 1.200 to 1.450 GeV.
Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 1.450 to 1.650 GeV.
Transverse momentum (p^e_T) spectra of electrons from semileptonic weak decays of heavy flavor mesons in the range of 0.3 < p^e_T < 9.0 GeV/c have been measured at mid-rapidity (|eta| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The nuclear modification factor R_AA with respect to p+p collisions indicates substantial energy loss of heavy quarks in the produced medium. In addition, the azimuthal anisotropy parameter v_2 has been measured for 0.3 < p^e_T < 5.0 GeV/c in Au+Au collisions. Comparisons of R_AA and v_2 are made to various model calculations.
The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0
We report a new measurement of the differential cross section for π−p→π0n from pπ=649 to 752 MeV/c, which is around the opening of the η channel (685 MeV/c). Our data support the main features of the π−p charge-exchange differential cross sections generated by the SAID πN partial-wave analysis. The opening of the η channel has a clear effect on the shape of the excitation function for dσ(π−p→π0n), which is most noticeable in the backward direction.
Differential cross section for incident pion momentum 649, 654 and 657 MeV.
Differential cross section for incident pion momentum 661, 666 and 669 MeV.
Differential cross section for incident pion momentum 673, 678 and 681 MeV.
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.
The exclusive production cross sections for $\omega$ and $\phi$ mesons have been measured in proton-proton reactions at $p_{lab}=3.67$ GeV/c. The observed $\phi/\omega$ cross section ratio is $(3.8\pm0.2^{+1.2}_{-0.9})\times 10^{-3}$. After phase space corrections, this ratio is enhanced by about an order of magnitude relative to naive predictions based upon the Okubo-Zweig-Iizuka (OZI) rule, in comparison to an enhancement by a factor $\sim 3$ previously observed at higher beam momenta. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the $\phi/\omega$ ratio observed in specific channels of $\bar pp$ annihilation experiments. Furthermore, differential cross section results are also presented which indicate that although the $\phi$ meson is predominantly produced from a $^3P_1$ proton-proton entrance channel, other partial waves contribute significantly to the production mechanism at this beam momentum.
No description provided.
Differential cross section of OMEGA production.
Differential cross section of PHI production.
We present data on the production of the baryons Λ,\(\bar \Lambda \),p and of the baryon resonances Σ*+ (1385) and Δ++ (1232) inK+p and π+p interactions at 250 GeV/c. Results are given on total and semi-inclusive cross sections, Feynman-x spectra, transverse momentum distributions and Λ polarization. The data are compared with measurements at lower energies, with deep inclastic lepton nucleon data and with predictions of quark-parton models. The models underestimate Λ production in the central c.m. region, a feature also seen in recent heavy-ion data. This failure can be cured in JETSET 6.3 by adjustment of the di-quark break-up probability.
No description provided.
No description provided.
No description provided.