The p̄p total annihilation cross section has been measured, with the Obelix apparatus at LEAR, at ten values of the antiproton incident momentum between 43 and 175 MeV/ c . The values of the cross section show that the well known 1 p behaviour of the annihilation cross section is drastically modified at very low momenta, which demonstrates the important role of the Coulomb force in low energy p̄p interaction. Moreover, they do not present any explicit resonant behaviour. Finally, when compared to potential model calculations, the data suggest that the percentage of P-wave in p̄p interaction around 50 MeV/ c antiproton incident momentum is less than 5%.
No description provided.
The frequency of the protonium annihilation channel p p → K S K L has been measured at three different target densities: liquid hydrogen ( LH ), gaseous hydrogen at NTP conditions and gaseous hydrogen at low pressure (5 mbar). The obtained results are: f( p p → K S K L , LH) = (7.8 ± 0.7 stat ± 0.3 sys ) × 10 −4 , f( p p → K S K L , NTP) = (3.5 ± 0.5 stat ± 0.2 sys ) × 10 −4 and f( p p → K S K L , 5 mbar ) = (1.0 ± 0.3 stat ± 0.1 sys ) × 10 −4 . Since the K S K L final stat and be originated only from the 3 S 1 initial state, these values give direct information on the scaling of the protonium spin-triplet S-wave annihilation probability with the density.
Three different target densities: liquid hydrogen (LH), gaseous hydrogen atstandard temperature and pressure conditions (NTP), and gaseous hydrogen at 5 m bar pressure (LP). The annihilation proceeds only from 3S1 initial state.
Differential and total cross sections for the photoproduction of neutral pions from the proton have been measured for incident photon energies from 140–270 MeV, using the photon spectrometer TAPS at the tagged photon beam of the 855 MeV Mainz Microtron. The energy dependence of the s- and p-wave multipoles close to threshold was deduced from a multipole fit and a multipole analysis. The extracted s-wave amplitude E 0+ at threshold is found to be significantly smaller than the prediction of the classical low energy theorems, but is in reasonable agreement with the chiral perturbation theory.
No description provided.
Antiproton production near midrapidity has been studied in central collisions of 32 S with sulphur, silver and gold nuclei at 200 GeV per nucleon. The measured transverse mass distributions can be described by an exponential with inverse slope parameters of about 200 MeV, similar to those obtained from Λ spectra. The rapidity density increases weakly with the target mass, ranging from 0.4 to 0.7. The ratio Λ p near midrapidity is approximately 1.4 on average, significantly larger than the corresponding ratio observed in proton-proton and proton-nucleus collisions.
No description provided.
No description provided.
The p+p→π++d reaction is studied at excess energies between 0.275 and 3.86 MeV. Differential and total cross section were measured employing a magnetic spectrometer with nearly 4π acceptance in the center of mass system. The measured anisotropies between 0.008 and 0.29 indicate that the p wave is not negligible even so close to threshold. The data are compared to other data offering no evidence for charge symmetry breaking or time reversal violation. The s-wave and p-wave contributions at threshold are deduced.
The CONST is p-wave contribution to the cross section. The differential cross section is fitted usig the relations 4*pi*D(SIG)/D(OMEGA) = SIG + CONST*P2(COS(THETA)), where P2 denotes the Legendre polynomial.
None
No description provided.
The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$) at a median $Q~{2}$ of $10~{-4} \ \rm{GeV~2}$ has been studied with the ZEUS detector at HERA. The differential $\phi$ photoproduction cross section $d\sigma/dt$ has an exponential shape and has been determined in the kinematic range $0.1<|t|<0.5 \ \rm{GeV~2}$ and $60 < W < 80 \ \rm{GeV}$. An integrated cross section of $\sigma_{\gamma p \rightarrow \phi p} = 0.96 \pm 0.19~{+0.21}_{-0.18}$ $\rm{\mu b}$ has been obtained by extrapolating to {\it t} = 0. When compared to lower energy data, the results show a weak energy dependence of both $\sigma_{\gamma p \rightarrow \phi p}$ and the slope of the $t$ distribution. The $\phi$ decay angular distributions are consistent with $s$-channel helicity conservation. From lower energies to HERA energies, the features of $\phi$ photoproduction are compatible with those of a soft diffractive process.
.
Numerical values of dsig/dt distribution requested from authors.
Numerical values of dsig/dt distribution read from plot.
The cross section for the elastic photoproduction of \r0\ mesons ($\gamma p \rightarrow \rho~0 p$) has been measured with the H1 detector at HERA for two average photon-proton centre-of-mass energies of 55 and 187GeV. TheFcenterline lower energy point was measured by observing directly the $\rho~{0}$ decay giving a cross section of $9.1\pm 0.9\,(\stat)\pm 2.5\,(\syst)\;\mu$b. The logarithmic slope parameter of the differential cross section, ${\rm d}\sigma/{\rm d}t$, is found to be $10.9 \pm 2.4\,(\stat) \pm 1.1\,(\syst)\;$GeV$~{-2}$. The \r0\ decay polar angular distribution is found to be consistent with s-channel helicity conservation. The higher energy cross section was determined from analysis of the lower part of the hadronic invariant mass spectrum of diffractive photoproduction and found to be $13.6\pm 0.8\,(\stat)\pm 2.4\,(\syst)\;\mu$b.
PI+ PI- cross section.
RHO0 cross section by selecting Mpipi to lie between 2Mpi and Mrho + 5width0.
No description provided.
We report our final results from the analysis of the full high statistics sample of events of the reaction ν μ + e − → μ − + ν c collected with the CHARM II detector in the CERN wide-band neutrino beam during the years 1988 to 1991. From a signal of 15758 ± 324 inverse muon decay events we derived, inthe Born approximation, a value of (16.51 ± 0.93) × 10 −42 cm 2 GeV −1 for the asymptotic cross section slope σ E ν , in goodagreement with the Standard Model prediction of 17.23 × 10 −42 cm 2 GeV −1 . The result constrains the scalar coupling of the electron and the muon to | g LL S | 2 < 0.475 at 90% CL.
23.8 is mean neutrino beam energy.
Born approximation of the asymptotic cross section slope obtained by applying radiative corrections, which amount to a 3% effect.. Error is combined statistics and systematics.. 23.8 is mean neutrino beam energy.
Statistical error only.
No description provided.
No description provided.