This article presents a search for new resonances decaying into a $Z$ or $W$ boson and a 125 GeV Higgs boson $h$, and it targets the $\nu\bar{\nu}b\bar{b}$, $\ell^+\ell^-b\bar{b}$, or $\ell^{\pm}{\nu}b\bar{b}$ final states, where $\ell=e$ or $\mu$, in proton-proton collisions at $\sqrt{s}=13$ TeV. The data used correspond to a total integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of $Zh$ or $Wh$ candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model.
Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> vvbb/cc signals in the 0-lepton channel.
Acceptance * reconstruction efficiency for the P P --> Zprime --> Zh --> llbb/cc signals in the 2-lepton channel.
Acceptance * reconstruction efficiency for the P P --> bbA --> Zh --> vvbb signals in the 0-lepton channel.
The Standard Model of particle physics describes the known fundamental particles and forces that make up our universe, with the exception of gravity. One of the central features of the Standard Model is a field that permeates all of space and interacts with fundamental particles. The quantum excitation of this field, known as Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the Standard Model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, allowing much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and $W$ and $Z$ bosons -- the carriers of the strong, electromagnetic, and weak forces -- are studied in detail. Interactions with three third-generation matter particles (bottom ($b$) and top ($t$) quarks, and tau leptons ($\tau$)) are well measured and indications of interactions with a second-generation particle (muons, $\mu$) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the Standard Model.
Observed and predicted cross sections for different Higgs boson production processes, measured assuming SM values for the decay branching fractions. The lower panels show the ratios of the measured values to their SM predictions. The $p$-value for compatibility of the measurement and the SM prediction is 65%.
Observed and predicted branching fractions for different Higgs boson decay modes measured assuming SM values for the production cross sections. The lower panels show the ratios of the measured values to their SM predictions. The $p$-value for compatibility of the measurement and the SM prediction is 56%.
Ratio of observed rate to predicted SM event rate for different combinations of Higgs boson production and decay processes. The narrow grey bands indicate the theory uncertainties in the SM cross-section times the branching fraction predictions. The $p$-value for compatibility of the measurement and the SM prediction is 72%.
This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.
Signal region detector-level distribution for the observable $|y_{e\mu}|$.
Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.
Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.
A search for light long-lived neutral particles with masses in the $O$(MeV-GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon-gluon fusion or in association with a $W$ boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length $c\tau$ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV.
The reconstruction efficiency for μDPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a γ<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1 as a function of the transverse decay length L<sub>xy</sub>.
The reconstruction efficiency for μDPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a γ<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1 as a function of the γ<sub>d</sub> transverse momentum in events where the γ<sub>d</sub> L<sub>xy</sub> is below 6 m.
The reconstruction efficiency for caloDPJs produced by the decay of γ<sub>d</sub> into e<sup>+</sup>e<sup>-</sup> or qq̄. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as a function of the transverse decay length L<sub>xy</sub>. The efficiency drop at 2.5 m corresponds to the end of the first layer of the HCAL.
A precise measurement of the invisible width of the Z boson produced in proton-proton collisions at a center-of-mass energy of 13 TeV is presented using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The result is obtained from a simultaneous fit to kinematic distributions for two data samples of Z boson plus jets: one dominated by Z boson decays to invisible particles and the other by Z boson decays to muon and electron pairs. The invisible width is measured to be 523 $\pm$ 3 (stat) $\pm$ 16 (syst) MeV. This result is the first precise measurement of the invisible width of the Z boson at a hadron collider, and is the single most precise direct measurement to date, competitive with the combined result of the direct measurements from the LEP experiments.
Measured Z invisible width.
Systematic uncertainties on Z invisible width.
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.
The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).
The per-jet charged particle yield in pPb and pp collisions for hadrons opposite to a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).
The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).
A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The search uses two observables, $\mathcal{O}_1$ and $\mathcal{O}_3$, which are Lorentz scalars. The observable $\mathcal{O}_1$ is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while $\mathcal{O}_3$ consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.
Measured asymmetries of O_1 and O_3 with statistical uncertainties
The measured asymmetries of O_1 and O_3, and dimensionless CEDM \ImdtG, extracted using the asymmetries in O_1 and O_3, with their uncertainties.
Results for the covariance matrix where the parameters a and b are taken from a linear fit (equation 11) to the different CP-violating samples (CEMD).
This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.
This material aims to give people outside the ATLAS Collaboration the possibility to reinterpret the results from the search for heavy charged long-lived particles (CLLPs), using only particles from Monte Carlo event generators. The reinterpretation material is provided for signal regions SR-Inclusive_Low and SR-Inclusive_High. <ul display="inline-block"> <li>The "long" lifetime regime of mass windows is used.</li> <li>Users are guided to read Guide.pdf (available from "Resources" or "Download All" buttons) for how to use the provided materials for reinterpretation.</li> <li>The pseudo-code snippet snippet.cxx also illustrates a sketch of possible implementation.</li> </ul> <b>Signal Region (Discovery) mass distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20mass%20distribution">SR-Inclusive_Low mass distribution</a></li> <li><a href="?table=SR-Inclusive_High%20mass%20distribution">SR-Inclusive_High mass distribution</a></li> </ul> <b>Signal Region (Discovery) $p_\text{T}, \eta, dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20pT%20distribution">SR-Inclusive_Low pT distribution</a></li> <li><a href="?table=SR-Inclusive_High%20pT%20distribution">SR-Inclusive_High pT distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20$eta$%20distribution">SR-Inclusive_Low $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_High%20$eta$%20distribution">SR-Inclusive_High $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20dE/dx%20distribution">SR-Inclusive_Low dE/dx distribution</a></li> <li><a href="?table=SR-Inclusive_High%20dE/dx%20distribution">SR-Inclusive_High dE/dx distribution</a></li> </ul> <b>Signal Region (Limit Setting) mass distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20mass%20distribution">SR-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20mass%20distribution">SR-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20mass%20distribution">SR-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20mass%20distribution">SR-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20mass%20distribution">SR-Trk-IBL1 mass distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20mass%20distribution">SR-Mu-IBL1 mass distribution</a></li> </ul> <b>Signal Region (Limit Setting) $p_\text{T}$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20pT%20distribution">SR-Trk-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20pT%20distribution">SR-Mu-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20pT%20distribution">SR-Trk-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20pT%20distribution">SR-Mu-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20pT%20distribution">SR-Trk-IBL1 pT distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20pT%20distribution">SR-Mu-IBL1 pT distribution</a></li> </ul> <b>Signal Region (Limit Setting) $dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20dE/dx%20distribution">SR-Trk-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20dE/dx%20distribution">SR-Mu-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20dE/dx%20distribution">SR-Trk-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20dE/dx%20distribution">SR-Mu-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20dE/dx%20distribution">SR-Trk-IBL1 dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20dE/dx%20distribution">SR-Mu-IBL1 dE/dx distribution</a></li> </ul> <b>Discovery Signal Regions $p_{0}$ values</b> <ul> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20short%20regime">p0-values and model-independent limits, short regime</a></li> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20long%20regime">p0-values and model-independent limits, long regime</a></li> </ul> <b>Validation Region plots</b> <ul> <li><a href="?table=VR-LowPt-Inclusive_High%20mass%20distribution">VR-LowPt-Inclusive_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Inclusive%20mass%20distribution">VR-HiEta-Inclusive mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-LowPt-Trk-IBL0_Low%20mass%20distribution">VR-LowPt-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_Low%20mass%20distribution">VR-LowPt-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL0_High%20mass%20distribution">VR-LowPt-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_High%20mass%20distribution">VR-LowPt-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL1%20mass%20distribution">VR-LowPt-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL1%20mass%20distribution">VR-LowPt-Mu-IBL1 mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-HiEta-Trk-IBL0_Low%20mass%20distribution">VR-HiEta-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_Low%20mass%20distribution">VR-HiEta-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL0_High%20mass%20distribution">VR-HiEta-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_High%20mass%20distribution">VR-HiEta-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL1%20mass%20distribution">VR-HiEta-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL1%20mass%20distribution">VR-HiEta-Mu-IBL1 mass distribution</a></li> </ul> <b>Mass vs. Lifetime limit plots</b> <ul> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Expected">Mass Limit vs. Lifetime, R-hadron, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Observed">Mass Limit vs. Lifetime, R-hadron, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Expected">Mass Limit vs. Lifetime, R-hadron, compressed, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Observed">Mass Limit vs. Lifetime, R-hadron, compressed, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Expected">Mass Limit vs. Lifetime, Chargino, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Observed">Mass Limit vs. Lifetime, Chargino, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Expected">Mass Limit vs. Lifetime, Stau, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Observed">Mass Limit vs. Lifetime, Stau, Observed</a></li> </ul> <b>Cross-section limit plots</b> <ul> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%201ns">Cross Section Limit, R-hadron 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%203ns">Cross Section Limit, R-hadron 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2010ns">Cross Section Limit, R-hadron 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2030ns">Cross Section Limit, R-hadron 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Stable">Cross Section Limit, R-hadron Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%201ns">Cross Section Limit, R-hadron Compressed 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%203ns">Cross Section Limit, R-hadron Compressed 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2010ns">Cross Section Limit, R-hadron Compressed 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2030ns">Cross Section Limit, R-hadron Compressed 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%201ns">Cross Section Limit, Chargino 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%204ns">Cross Section Limit, Chargino 4ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2010ns">Cross Section Limit, Chargino 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2030ns">Cross Section Limit, Chargino 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%20Stable">Cross Section Limit, Chargino Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%201ns">Cross Section Limit, Stau 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%203ns">Cross Section Limit, Stau 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2010ns">Cross Section Limit, Stau 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2030ns">Cross Section Limit, Stau 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%20Stable">Cross Section Limit, Stau Stable</a></li> </ul> <b>Signal Region events projected to other kinematic variables</b> <ul> <li><a href="?table=SR-Inclusive_Low%20MET">SR-Inclusive_Low MET</a></li> <li><a href="?table=SR-Inclusive_High%20MET">SR-Inclusive_High MET</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Track)">SR-Inclusive_Low deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Track)">SR-Inclusive_High deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Track)">SR-Inclusive_Low mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Track)">SR-Inclusive_High mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20Leading%20jet%20pT">SR-Inclusive_Low Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_High%20Leading%20jet%20pT">SR-Inclusive_High Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_Low deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_High deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_Low deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_High deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Leading%20jet)">SR-Inclusive_Low mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Leading%20jet)">SR-Inclusive_High mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20Effective%20mass">SR-Inclusive_Low Effective mass</a></li> <li><a href="?table=SR-Inclusive_High%20Effective%20mass">SR-Inclusive_High Effective mass</a></li> </ul> <b>Acceptance and efficiency values for reinterpretation</b> <ul> <li><a href="?table=Muon%20Reconstruction%20Efficiency%20distribution">Muon Reconstruction Efficiency distribution</a></li> <li><a href="?table=Muon%20Reconstruction%20Efficiency,%20R-hadron%20distribution">Muon Reconstruction Efficiency, R-hadron distribution</a></li> <li><a href="?table=Trigger%20Efficiency%20distribution">Trigger Efficiency distribution</a></li> <li><a href="?table=Event%20Selection%20Efficiency%20distribution">Event Selection Efficiency distribution</a></li> <li><a href="?table=Track%20Selection%20Efficiency%20distribution">Track Selection Efficiency distribution</a></li> <li><a href="?table=Mass%20Window%20Efficiency">Mass Window Efficiency</a></li> </ul> <b>Acceptance and efficiency tables for signal samples</b> <ul> <li><a href="?table=Acceptance,%20R-hadron">Acceptance, R-hadron</a></li> <li><a href="?table=Acceptance,%20R-hadron,%20compressed">Acceptance, R-hadron, compressed</a></li> <li><a href="?table=Acceptance,%20Chargino">Acceptance, Chargino</a></li> <li><a href="?table=Acceptance,%20Stau">Acceptance, Stau</a></li> </ul> <ul> <li><a href="?table=Event-level%20efficiency,%20R-hadron">Event-level efficiency, R-hadron</a></li> <li><a href="?table=Event-level%20efficiency,%20R-hadron,%20compressed">Event-level efficiency, R-hadron, compressed</a></li> <li><a href="?table=Event-level%20efficiency,%20Chargino">Event-level efficiency, Chargino</a></li> <li><a href="?table=Event-level%20efficiency,%20Stau">Event-level efficiency, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron">Efficiency, SR-Inclusve_High, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron,%20compressed">Efficiency, SR-Inclusve_High, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Chargino">Efficiency, SR-Inclusve_High, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Stau">Efficiency, SR-Inclusve_High, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron">Efficiency, SR-Inclusive_Low, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron,%20compressed">Efficiency, SR-Inclusive_Low, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Chargino">Efficiency, SR-Inclusive_Low, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Stau">Efficiency, SR-Inclusive_Low, Stau</a></li> </ul> <b>Cut flow for signal samples</b> <ul> <li><a href="?table=Cut%20Flow,%20R-hadron">Cut Flow, R-hadron</a></li> <li><a href="?table=Cut%20Flow,%20R-hadron,%20compressed">Cut Flow, R-hadron, compressed</a></li> <li><a href="?table=Cut%20Flow,%20Chargino">Cut Flow, Chargino</a></li> <li><a href="?table=Cut%20Flow,%20Stau">Cut Flow, Stau</a></li> </ul>
Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.