Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.
Differential cross section for prompt PI+-, K+- and PBAR/P production.
Differential cross section for conventional PI+-, K+- and PBAR/P production.
Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 < Q^2 < 20 480\gev^2$ and $0.0024 < x < 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.
Mean value of the event shape variable 1-THRUST(C=T).
Mean value of the event shape variable B(C=T).
Mean value of the event shape variable RHO**2.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.
No description provided.
No description provided.
No description provided.
Identification of muons in hadronic events from e+e− annihilation observed in the MAC detector at the storage ring PEP provides flavor tagging of heavy primary quarks. A sample enriched in events from bb¯ production is obtained and the b-quark fragmentation function is inferred from the momentum spectrum of the muons. The b quark is found to fragment predominantly with high values of z, with 〈zb〉=0.8±0.1, and to have an over-all semimuonic branching fraction of (15.5−2.9+5.4)%.
No description provided.
No description provided.