A high-statistics measurement is presented of the cross section for the process e+e−→τ+τ− at s=29 GeV from the MAC detector at PEP. A fit to the angular distribution of our sample of 10 153 events with |cosθ|<0.9 gives an asymmetry Aττ=−0.055±0.012±0.005 from which we find the product of electron and tau axial-vector weak neutral couplings gAegAτ=0.22±0.05.
Data fully corrected up to O(ALPHA**3) radiative effects. Data requested from authors.
Data extrapolated to full acceptance.
No description provided.
The reaction γp→ρfast0pπ+π− has been studied with the linearly polarized 20-GeV monochromatic photon beam at the SLAC Hybrid Facility to test the prediction of s-channel helicity conservation in inelastic diffraction for t’<0.4 (GeV/c)2. In a sample of 1934 events from this reaction, the ρ0 decay-angular distributions and spin-density-matrix elements are consistent with s-channel helicity conservation, the π+π− mass shape displays the same skewing as seen in the reaction γp→pπ+π−, and the pπ+π− mass distribution compares well and scales according to the vector dominance model with that produced in π±p→πfast±pπ+π−.
No description provided.
No description provided.
SPIN DENSITY MATRIX ELEMENTS FOR THE DIFFRACTIVE RHO0 MESON FROM STUDY OF THE ANGULAR DISTRIBUTIONS. CORRECTION HAS BEEN MADE FOR THE (20 +- 5) PCT NON DIFFRACTIVE BACKGROUND IN THE FINAL DATA SAMPLE, ASSUMING IT TO HAVE AN ISOTOPIC ANGULAR DISTRIBUTION.
We report a high-precision measurement of the ratio R of the total cross section for e+e−→hadrons to that for e+e−→μ+μ−, at a center-of-mass energy of 29.0 GeV using the MAC detector. The result is R=3.96±0.09. This value of R is used to determine a value of the strong coupling constant αs of 0.23±0.06, nearly independent of fragmentation models. Two different analysis methods having quite different event-selection criteria have been used and the results are in agreement. Particular attention has been given to the study of systematic errors. New higher-order QED calculations are used for the luminosity determination and the acceptance for hadrons.
No description provided.
No description provided.
The results of the study of the π + p→K + ∑ + (1) and π + p→K + ∑ + (1385) (2) reactions at 12 GeV/ c are presented. The differential cross sections d σ /d t in| t min |<| t |<0.8 (GeV/ c ) 2 momentum transfer range are measured. The ∑ + polarisation for | t |<0.5 (GeV/ c ) 2 for reaction (1) is defined. Binary reactions (1) and (2) were selected by analyzing the missing mass spectra for the forward emitted fast K + meson. The total cross sections in the studied momentum transfer range are 20.2±2.4 μ b and 7.3±1.1 μ b for the reactions (1) and (2) respectively. The experimental results are compared with the predictions of the Regge models which take into account rescattering and secondary singularities.
SYSTEMATIC ERRORS INCLUDED.
No description provided.
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).
Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).
No description provided.
None
No description provided.
No description provided.
Direct photon production in hadronic events from e+e− annihilation has been studied at s=29 GeV with use of the MAC detector at the PEP storage ring. A charge asymmetry A=(−12.3±3.5)% is observed in the final-state jets. The cross section and the charge asymmetry are in good agreement with the predictions of the fractionally charged quark-parton model. Both the charge asymmetry and total yield have been used to determine values of quark charges. Limits have been established for anomalous sources of direct photons.
No description provided.
No description provided.
The energy-energy correlation cross section for hadrons produced in electron-positron annihilation at a center-of-mass energy of 29 GeV has been measured with the MAC detector at SLAC. The result is corrected for the effects of detector resolution, acceptance, and initial-state radiation. The correlation is measured in two independent ways on the same data sample: the energy weights and angles are obtained either from the energy flow in the finely segmented total absorption calorimeters or from the momenta of charged tracks in the central drift chamber. This procedure helps reduce systematic errors by cross-checking the effects of the detector on the measurement, particularly important because the corrections depend on complex Monte Carlo simulations. The results are compared with the predictions of Monte Carlo models of complete second-order perturbative quantum chromodynamics and fragmentation, with the following conclusions: (1) fitting the asymmetry for large correlation angles gives values for αS of 0.120±0.006 in perturbation theory, 0.185±0.013 in the Lund string model, and values which vary from 0.105 to 0.140 (±0.01) in the incoherent jet models, depending on the gluon fragmentation scheme and the algorithm used for momentum conservation; and (2) the string fragmentation model provides a satisfactory description of the measured energy-energy correlation cross section, whereas incoherent jet formation does not.
VALUES FOR THE ASSYMETRY ARE GIVEN ALSO.
We have observed the π+π− decay of the ρ′(1600) in the production reaction γp→ρ′p at 20 GeV. Using a calculation which takes into account the interference of the ρ′ with the ρ(770) and a Drell background, we find good evidence that this resonance is a radial excitation of the ρ(770). The background interference strongly distorts the angular distributions predicted by a purely s-channel helicity-conserving production mechanism. We measure m0=(1.55±0.07) GeV/c2 and Γ0=(0.28−0.08+0.03) GeV/c2.
SLOPE VARIATION WITH M(PI+ PI-) IN THE RANGE 0.4 TO 2.5 GEV.
No description provided.
No description provided.
We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 < q 2 < 0.122 (GeV/ c ) 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of 〈r 2 〈 1 2 = 0.657 ± 0.012 fm.
Errors are statistical only.