A measurement is reported of charged multiplicity distributions of high-mass diffractive π±, K±, and p± states produced in 100 and 200 GeV/c hadron-proton collisions, h+p→X+p. The distributions are described well by a Gaussian function that depends only on the available mass M=Mx−Mh, has a maximum at n0≅2M12, and a peak-to-width ratio n0D≅2.
MULTIPLICITY VERSUS AVAILABLE MASS MDD-MPI.
MULTIPLICITY VERSUS AVAILABLE MASS (MDD - MK).
MULTIPLICITY VERSUS AVAILABLE MASS (MDD - MP).
Using the UA5 detector, the inclusive central production of Ks<sup loc="post">0</sup> and K<sup loc="post">±</sup> mesons has been measured in non-single-diffractive interactions at the CERN SPS <math altimg="si1.gif"><ovl type="bar" style="s">p</ovl>p</math> Collider at a c.m. energy of 540 GeV. The average transverse momentum is found to be 〈pT〉 = 0.57±0.03 GeV/c in the rapidity range |y|<2.5, which is an increase of about 30% over the top ISR energy. The K/π ratio has increased from about 8% at ISR energies to 9.5±0.9±0.7% (the last error is systematic) at 540 GeV. The average number of Ks<sup loc="post">0</sup> per non-single-diffractive event is 1.1±0.1 and the inclusive inelastic cross section is estimated at 49±5 mb.
NON SINGLE DIFFRACTION CROSS SECTION.
The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.
Errors include statistical and systematic uncertainties.
The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .
Measured slope of the elastic cross section.
The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0\times10^{-3}<-t<4.1\times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $\text{Re} r_5=0.088\pm 0.058$ and $\text{Im} r_5=-0.161\pm 0.226$.
The analyzing power as a function of the momentum transfer T. The two DSYS errors are (1) the systematic error in the raw asymmetry and (2) that in the polarization of the beam.
We have investigated the elastic scattering of high energy $\Sigma^-$ off electrons from carbon and copper targets using the CERN hyperon beam. Scattering events a
No description provided.
The polarization transfer κ 0 and the tensor analyzing power T 20 for the 1 H d p)d reaction have been measured up to an internal momentum of k = 0.58 GeV/c. Comparison of the same observables obtained in recent studies for 1 H d p)d reaction, as a function of k , show different behavior. However the data from these two reactions are almost identical when compared in T 20 versus κ 0 correlation plots. We discuss similarities and differences observed in the two reactions.
The authors use the Infinite Momentum Frame variable K= M( proton) * sqrt(1/(4*a*(1-a)) - 1), where a = (E(proton)+P_long(proton))/(E(deut)+P(deut)).
The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.
Analyzing powers for πp elastic scattering at bombarding energies below the Δ(1232) resonance were measured at TRIUMF using the CHAOS spectrometer and a polarized spin target. This work presents π− data at six incident energies of 57, 67, 87, 98, 117, and 139 MeV, and a single π+ data set at 139 MeV. The higher energy measurements cover an angular range of 72°<~θc.m.<~180° while the lower energies were limited to 101°<~θc.m.<~180°. There is a high degree of consistency between this work and the predictions of the VPI/GWU group’s SM95 partial wave analysis.
Analysing power measurements for a 139 GeV PI+ beam (standard track).
Analysing power measurements for a 139 GeV PI- beam (standard track).
Analysing power measurements for a 117 GeV PI- beam (standard track).
Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.
Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.
Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.
Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.