None
CROSS-OVER IS AT -T = 0.17 +- 0.02 GEV**2. DIVIDE BY 20 TO GET D(SIG)/DT IN MB/GEV**2. CORRECTED FOR LOST EVENTS FOR -T < 0.12 GEV**2.
FROM QUADRATIC EXPONENTIAL FIT TO D(SIG)/DT. BOTH STATISTICAL AND SYSTEMATIC ERRORS INCLUDED IN VALUES.
The differential cross sections for γp→γp and γp→π0p have been measured for incident photon energies in the range of 2 to 6 GeV and for |t| ranging from 0.7 to 4.3 GeV2. This corresponds to a center-of-mass angle range of 45° to 128°. The energy dependence of the data is compared to that predicted by several parton models.
No description provided.
No description provided.
No description provided.
A high-statistics measurement of the reaction π − p→ η n; η →2 γ has been performed at the 70 GeV Serpukhov accelerator for 15, 20, 25, 30 and 40 GeV/ c incident pion momentum using the NICE set-up with its associated 648-channel hodoscope spectrometer for γ-ray detection. It is found that the spin-flip and non-spin-flip amplitudes can be parametrized, for small | t |, as exponentials with the same slopes to within a few percent. For | t | ≳ 1 (GeV/ c ) 2 there is a break in the differential cross section. In addition, the A 2 effective trajectory deviates markedly for | t | ≳ 1 GeV/ c ) 2 from the linear behaviour valid for smaller | t |.
No description provided.
No description provided.
No description provided.
We report measurements of the electroproduction of φ mesons from hydrogen at Q2 values of 0.23, 0.43, and 0.97 GeV2 with |t| varying from 0.125 to 1.3 GeV2 at each Q2 point. The data show no evidence for a Q2 dependence of the slope of the t distribution, the forward cross section falls with increasing Q2 as the square of the φ propagator, the decay angular distributions agree with the predictions of s-channel helicity conservation, and the ratio of the longitudinal to the transverse component increases linearly with Q2.
No description provided.
The differential cross sections for K − p and p p elastic scattering have been measured over the range of four-momentum transfer squared 0.18<− t <3.3 (GeV/ c ) 2 . The K − p data decrease smoothly as a function of − t , whereas, the p p data shows a break at − t = 0.6 (GeV/ c ) 2 followed by a fast drop to − t ≅ 1.6 (GeV/ c ) 2 where the differential cross section levels off and stays constant out to − t = 3 (GeV/ c ) 2 .
No description provided.
No description provided.
We present experimental results on proton-deuteron and deuteron-deuteron elastic scattering measured at the two highest ISR energies, √ s = 53 GeV and √ s = 63 GeV. The data cover the single- and multiple-scattering regions over a wide interval of four-momentum transfer t . In both reactions we find clear evidence for a substantial t -dependent contribution of inelastic intermediate states in the multiple-scattering region, as well as in single scattering. In the analysis we use the Glauber multiple-scattering theory extended to include inelastic shadow effects. This extension of the basic theory contains as input a triple-Regge parametrization describing the high-mass inclusive spectrum. The analysis of inelastic corrections to multiple scattering on deuterons at high energies is shown to provide a sensitive test of different parametrization of inclusive production in proton-proton collisions.
AT SQRT(S) OF 53 AND 63 GEV.
None
No description provided.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
The elastic proton-helium differential cross sections have been determined for 5 different incident laboratory energies from 40 to 400 GeV in the range 0.003 < l t I < 0.52 (GeV/c)2. The differential cross section drops 4 - 5 orders of magnitude to the first dip at I t I = 0.22 (GeV/c)2. A Glauber analysis is performed on the data. The inelastic intermediate states are found to be important. The shrinkage of the slope of the differential cross section is measured. The rate of shrinkage is twice as large as in the p-p case. Results on the real part of the elastic scattering amplitude at forward angle and at the dip structure ( l t l similar/equal to 0.22) are presented.
No description provided.
No description provided.
No description provided.
Proton-proton elastic scattering at 400 GeV/c has been measured in the region 5.4<−t<14.4 GeV2 with no sign of a second dip or "break." If the data are fitted by exp(At), the slope A decreases from 1.5±0.1 to 0.7±0.2 GeV−2 over the range. At fixed t the 400-GeV/c cross sections are about 0.6 times those at 200 GeV/c in this t range. At fixed θc.m.=15°, dσdt∝s−n where n=9.7±0.3.
No description provided.
No description provided.