The total and differential cross sections of the reactions K − p → π 0 Λ (1520), ηΛ(1520) and η′ Λ(1520) have been measured. Prominent forward peaks are onserved in all three reactions. The first reaction shows also a backward peak. The spin density matrix elements of the Λ(1520) in this reaction are determined. For forward production the results show a remarkable alignment of the Λ(1520) corresponding to an M2 transition in the model of Stodolsky-Sakurai for 3 2 − baryon production.
TOTAL (FORWARD AND BACKWARD) CROSS SECTIONS. THE ERRORS ARE MAINLY SYSTEMATIC.
-TP = (-T - 0.04 GEV**2). MAX(-T) - MIN(-T) = 5.75 GEV**2.
-UP = (-U - 0.20 GEV**2).
Measurements are presented of the inclusive π 0 production cross section, in the transverse momentum range 2.3 ⪅ p T ⪅4.5 GeV/c, for dd and dp interactions at total c.m. energies of √ s = 52.7 GeV and √ s = 63.2 GeV and for pp interactions at √ s = 52.7 GeV. The produced π 0 's are detected by identifying both protons from the decay π 0 → γγ . As in pp interactions, the data can be adequately described by a p T −n ƒ(x T ) dependence with n ≌ 8 . The data are approximately consistent with the expectations of free nucleon scattering. No significant differenceare observed in either the charged or the neutral particle distributions associated with π 0 , for dd, dp and pp interactions.
GLOBAL NORMALIZATION UNCERTAINTY = 12 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 5 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 10 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 6 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 15 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 7 PCT.
Inclusive and semi-inclusive distributions of γ's and π 0 's in the reactions K + p → γ + X and K + p → π 0 + X at 32 GeV/ c are presented and discussed. When compared to the inclusive π − production, the π 0 cross section is found to be significantly higher in low | x | and p T regions. The data are compared with other experiments and quark fusion model predictions.
No description provided.
No description provided.
ESTIMATED FROM GAMMA AND 2GAMMA SPECTRA.
Results are presented of polarization parameter measurements for the reaction π − p→ π 0 n at 22 momenta between 617 and 2267 MeV/ c . These results are generally in agreement with those of previous measurements and in qualitative agreement with predictions of phase-shift analyses. Together with the recently published differential cross-section measurements, they provide a comprehensive set of data for this reaction in the resonance region.
No description provided.
No description provided.
No description provided.
A ( K π π ) + mass enhancement is observed in the reactions K − p → Ξ −K o + π + π o − when events with a small (K − → Ξ − ) four momentum transfer squared are selected. The signal is also visible in the reaction K − p → Ξ − π + + neutrals. The enhancement, centered at 1.28 GeV, is seen to decay preferentially into Kϱ with spin-parity J P = 1 + . The cross section for K − p→ Ξ − C + (1.28) with C + → K ϱ at 4.15 GeV/c incident K − momentum is (6.2 ± 0.6) μ b.
ASSUMING ISOSPIN HALF FOR C(1280)+ AND C(1400)+. FOR C(1280)+, D(SIG)/DU HAS SLOPE OF 1.60 +- 0.30 GEV**-2. THESE AXIAL VECTOR RESONANCES ARE HERE ENCODED AS QLOW(1240)+ AND QHIGH(1340)+.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
No description provided.
No description provided.
We present experimental data on the K L 0 p → K S 0 p reaction between 4 and 14 GeV/ c in the range 0.1 ≲ | t | ≲ 2 GeV 2 . This experiment has been performed at the CERN PS, using spark chambers and a large aperture magnet. The results show a break of slope at t = −0.3 GeV 2 . The ω trajectory deduced from the data has an intercept α (0) = 0.5 and a slope α ′ = 0.88. A comparison with various models shows that the non-flip amplitude is dominant.
No description provided.
None
OVERALL NORMALIZATION ERROR NOT INCLUDED. -TMIN IS 0.015 (0.023) GEV**2 FOR THE LAMBDA (SIGMA0) REACTION.
INCLUDING NORMALIZATION UNCERTAINTY IN ERRORS. USING EMPIRICAL FITS TO D(SIG)/DT FOR -T > 1.0 GEV**2.
No description provided.
An analysis of the K 0 K 0 system at threshold produced in the final states p p → K S 0 K S 0 ( n π) at 700–760 MeV/ c , is presented. A simultaneous fit to the ππ phase shifts and inelasticities and to the K S 0 K S 0 effective-mass distributions using parametrizations which take into account the analytical and unitarity properties of the I = 0 S-wave amplitudes is performed. The behaviour of the eigenphases and the unphysical Riemann sheet structure for different solutions is studied.
No description provided.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI+ PI-> FINAL STATE.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI0> FINAL STATE.
The total cross section for e + e − annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficiencies for photons and charged particles. The measured difference in R = σ had / σμμ between 3.6 GeV and 5.2 GeV is ΔR = 2.1 ± 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given.
EXCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
INCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.