In 1996 LEP ran at a centre-of-mass energy of 161 GeV, just above the threshold of W-pair production. DELPHI accumulated data corresponding to an integrated luminosity of 9.93 pb −1 , and observed 29 events that are considered as candidates for W-pair production. From these, a cross-section for the doubly resonant e + e − → WW process of 3.67 −0.85 +0.97 ± 0.19 pb has been measured. Within the Standard Model, this cross-section corresponds to a mass of the W-boson of 80.40 ± 0.44 (stat.) ± 0.09 (syst.) ± 0.03 (LEP) GeV/ c 2 . Alternatively, if m W is held fixed at its current value determined by other experiments, the observed cross-section is used to obtain limits on trilinear WWV (V ≡ γ, Z) couplings.
No description provided.
Inclusive cross sections for Ξ- hyperon production in high-energy Σ-, π- and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary Σ- and π- beams with average momenta of 345 GeV/c and a neutron beam of 260 GeV/c were produced by primary protons of 450 GeV/c from the CERN SPS. The influence of the target mass on the Ξ- cross section is explored by comparing reactions on copper and carbon nuclei. Both single and double differential cross sections are presented as a function of the transverse momentum and the Feynman variable xF. A strong leading effect for Σ- produced by Σ- is observed.
No description provided.
No description provided.
No description provided.
Measurements of the partial linear momentum transfer and production cross sections for light charged particles are reported for the reaction 680 MeV Ar40+natAg. From examination of light charged particle invariant cross section maps and comparison of experimental angular distributions and energy spectra to a reaction kinematics simulation, an average value of 85% linear momentum transfer is deduced, with a spin range of (0–75)ħ. Integration over energy and angle yields single and coincident light charged particle production cross sections. © 1996 The American Physical Society.
No description provided.
This report describes the first search for top squark pair production in the channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using 74.9 +- 8.9 pb~-1 of data collected using the D0 detector. A 95% confidence level upper limit on sigma*B is presented. The limit is above the theoretical expectation for sigma*B for this process, but does show the sensitivity of the current D0 data set to a particular topology for new physics.
Data are extracted from the figure. Sigma*Br.
A search for signals of new physics has been carried out in the channel p pbar -> gamma gamma + ETmiss. This signature is expected in various recently proposed supersymmetric (SUSY) models. We observe 842 events with two photons having transverse momentum ET(g) > 12 GeV and pseudorapidity |eta(g)| < 1.1. Of these, none have missing transverse energy (ETmiss) in excess of 25 GeV. The distribution of ETmiss is consistent with that of the expected background. We therefore set limits on production cross sections for selectron, sneutrino and neutralino pairs, decaying into photons. The limits range from about 400 fb to 1 pb depending on the sparticle masses. A general limit of 185 fb (95% C.L.) is set on sigma.B(pbar p -> gamma gamma ETmiss + X) where ET(g) > 12 GeV, |eta(g)| < 1.1, and ETmiss > 25 GeV.
$INVISIBLE means ET(missing).
We present the results of a search for third generation leptoquark (LQ) pairs in 110±8pb−1of p¯p collisions at s=1.8TeV recorded by the Collider Detector at Fermilab. We assume third generation leptoquarks decay to a τ lepton and a b quark with branching ratio β. We observe one candidate event, consistent with standard model background expectations. We place upper limits on σ(p¯p→LQLQ¯)̇β2 as a function of the leptoquark mass MLQ. We exclude at 95% confidence level scalar leptoquarks with MLQ<99GeV/c2, gauge vector leptoquarks with MLQ<225GeV/c2, and nongauge vector leptoquarks with MLQ<170GeV/c2 for β=1.
The cross sections times branching ratio. KAPPA is an 'anomalous magnetic moment' (theoretical parameter). See text for details.
Using the VENUS detector at TRISTAN we have investigated the charm-quark production by detecting D*+ - mesons in the two-photon process of e+et - collisions. The study has confirmed that the charm-quark production rate is larger than that predicted from direct cc̅ production alone. The distribution of the transverse momentum of the D*+ t- mesons and the forward energy flow associated with the D*+ - production suggest that the main part of the observed excess comes from the contribution of a resolved photon process.
D* production cross section in the given kinematic ranges under the anti-tagging condition |cos(theta(e+-))|>0.990.
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
We report on a search for pair production of a fourth generation charge -1/3 quark (b') in pbar p collisions at sqrt(s) = 1.8 TeV at the Fermilab Tevatron using an integrated luminosity of 93 pb^-1. Both quarks are assumed to decay via flavor changing neutral currents (FCNC). The search uses the signatures gamma + 3 jets + mu-tag and 2 gamma + 2 jets. We see no significant excess of events over the expected background. We place an upper limit on the production cross section times branching fraction that is well below theoretical expectations for a b' quark decaying exclusively via FCNC for b' quark masses up to m(Z) + m(b).
Cross section times branching fraction for the gamma+3jets channel.
Cross section times branching fraction for the 2gamma+2jets channel.
No description provided.
The WA94 experiment uses the production of strange particles and antiparticles to investigate the properties of hot hadronic matter created in heavy-ion interactions. Λ, Λ , Ξ − and Ξ + particle yields and transverse mass spectra are presented for pS interactions. These results are compared with those from SS interactions. Our results are also compared with those from pW and SW interactions of the WA85 experiment.
The fit with formula (1/MT**1.5)*D(SIG)/D(MT) = CONST*EXP(MT/SLOPE).
No description provided.
No description provided.