We measured the analyzing power A out to P⊥2=7.1 (GeV/c)2 with high precision by scattering a 24-GeV/c unpolarized proton beam from the new University of Michigan polarized proton target; the target’s 1-W cooling power allowed a beam intensity of more than 2×1011 protons per pulse. This high beam intensity together with the unexpectedly high average target polarization of about 85% allowed unusually accurate measurements of A at large P⊥2. These precise data confirmed that the one-spin parameter A is nonzero and indeed quite large at high P⊥2; most theoretical models predict that A should go to zero.
Errors quoted contain both statistical and systematic uncertainties.
We have determined mW=79.91±0.39 GeV/c2 from an analysis of W→eν and W→μν data from the Collider Detector at Fermilab in p¯p collisions at a c.m. energy of √s =1.8 TeV. This result, together with the world-average Z mass, determines the weak mixing angle to be sin2θW=0.232±0.008. Bounds on the top-quark mass are discussed.
Combining W mass result with world-average Z mass (91.191 GEV).
Overall systematic error is 2.3 pct.
Overall systematic error is 2.6 pct.
Overall systematic error is 2.8 pct.
A determination of the partial width Γ c c ̄ of the Z 0 boson into charm quark pairs is presented, based on a total sample of 36 900 Z 0 hadronic decays measured with the DELPHI detector at the LEP collider. The production rate of cc̄ events is derived from the inclusive analysis of charged pions coming from the decay of charmed meson D ∗+ → D 0 π + and D ∗− → D ̄ 0 π − where the π ± is constrained by kinematics to have a low p T with respect to the axis. The probability to produce these π ± from D ∗± decay in cc̄ events is taken to be 0.31 ±_0.05 as measured at √ s =10.55 GeV. The measured relative partial width Γ c c ̄ Γ h = 0.162± 0.030 ( stat. ) ±0.050 ( syst. ) is in good agreement with the standard moel value of 0.171. Together with our previous measurement of the total hadronic width Γ h this implies Γ c c ̄ = 282±53 ( stat. )±88( syst. ) MeV .
No description provided.
No description provided.
An analysis of W and Z boson production at UA1, using 4.66 pb −1 of data from the 1988 and 1989 CERN p p Collider runs at s =0.63 TeV , yields R ≡ σ W Br(W→ μ v)/ σ z Br( Z → μμ )=10.4 −1.5 +1.8 stat.±0.8(syst.) We find R =9.5 −1.0 +1.1 (stat.+syst.) when combining all available UA1 data, in both the electron and muon channel, taken in the period 1983–1989. In the framework of the standard model, the value of R is used to infer the total width of the W boson, Γ W tot =2.18 −0.24 +0.26 (exp.)±0.04(theory) GeV/ c 2 .
No description provided.
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
Photon structure function F2 for total data.
The transverse energy distributions have been measured for interactions of 32 S nuclei with Al, Ag, W, Pt, Pb, and U targets, at an incident energy of 200 GeV per nucleon in the pseudorapidity region −0.1 < ν lab < 5.5. These distributions are compared with those for 16 OW interactions in the same pseudorapidity region and with earlier measurements performed with 16 O and 32 S projectiles in the region −0.1 < ν lab < 2.9. These comparisons provide both a better understanding of the dynamics involved and improved estimates of stopping power and energy density.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The structure of the nucleon is studied by means of deep-inelastic neutrino-nucleon scattering at high energies through the weak neutral current. The neutrino-nucleon scattering events were observed in a 340-metric-ton fine-grained calorimeter exposed to a narrow-band (dichromatic) neutrino beam at Fermilab. The data sample after analysis cuts consists of 9200 charged-current and 3000 neutral-current neutrino and antineutrino events. The neutral-current valence and sea nucleon structure functions are extracted from the x distribution reconstructed from the measured angle and energy of the recoil-hadron shower and the incident narrow-band neutrino-beam energy. They are compared to those extracted from charged-current events analyzed as neutral-current events. It is shown that the nucleon structure is independent of the type of neutrino interaction, which confirms an important aspect of the standard model. The data are also used to determine the value of sin2θW=0.238±0.013±0.015±0.010 for a single-parameter fit, where the first error is from statistical sources, the second from experimental systematic errors, and the third from estimated theoretical errors.
Neutral-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.
Neutral-current sea-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.
Charged-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.