A study of 205-GeV/c π−p interactions has been made with a 48 800-picture exposure in the bare Fermilab 30-inch hydrogen bubble chamber. The average number of charged particles produced per inelastic interaction is 7.99±0.06. The elastic cross section is 3.18±0.13 mb and the total cross section is 24.19±0.44 mb. The inclusive cross sections for neutral-particle production are: σ(γ)=171.3±15.3 mb, σ(KS0)=3.64±0.61 mb (x<0.3), σ(Λ)=1.71±0.34 mb (x<0.3), and σ(Λ¯)=0.59±0.23 mb (x<0.1). The average number of π0's produced per inelastic collision is consistent with a linear rise with the number of charged particles, and about equal to the number of produced π− or π+. The average number of K0's, Λ's, and Λ¯'s is consistent with very little dependence on the number of charged particles. General characteristics of neutral-particle production are presented and compared with other experiments. For each topology the produced neutral energy is ∼13 of the incident energy.
No description provided.
No description provided.
No description provided.
The inclusive ϱ ° production cross section has been measured in the reaction π − p → π + π − X at 205 GeV/ c . We find σ ( ϱ ° ) = 13.5 ± 3.4 mb, with most of the production occuring in the central region. Assuming σ ( ϱ + ) ≈ σ ( ϱ − ) ≈ σ ( ϱ ° ), it is concluded that approximately one-third of the pions at this energy come from ϱ -decay.
No description provided.
No description provided.
No description provided.
In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.
Results are reported based on a study of 3114 π−p events at 205 GeV/c in the National Accelerator Laboratory 30-in. bubble chamber. The measured π−p total and elastic cross sections are 24.0 ± 0.5 and 3.0 ± 0.3 mb, respectively. The elastic differential cross section has a slope of 9.0 ± 0.7 GeV−2 for 0.03≤−t≤0.6 GeV2. The average charged-particle multiplicity for the inelastic events is 8.02 ± 0.12.
No description provided.
No description provided.
The joint decay density-matrix elements have been measured for the ρ0Δ++ and ωΔ++ channels at 3.7 GeV/c. The data are presented as a function of momentum transfer in both the t-channel and s-channel coordinate systems. The presence of correlated decays is illustrated for both reactions by employing selective cuts on the decay angles of one resonance, and displaying the effects on the decay distribution of the opposing resonance. An amplitude analysis is performed with the data near 0° production angle, where we obtain a helicity decomposition of the scattering amplitude with no experimental ambiguity.
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
T-CHANNEL COORDINATE SYSTEM (XYZ=TH).
S-CHANNEL COORDINATE SYSTEM (XYZ=SH).
A study of the A2+ mass spectrum in π+p interactions at 3.7 GeVc is presented. For a cut of t′=0.1−2.0 GeV2 and on eliminating the Δ++ we find that the three-pion mass spectrum in the A2+ region is fitted by the dipole formula with a confidence level of 53% and a single Breit-Wigner formula with a confidence level of 11%. Our result thus favors A2+ splitting although a single Breit-Wigner fit cannot be ruled out. We also report the A2+ decay branching fractions measured over all t′ values. They are 0.78 ± 0.05, 0.15 ± 0.04, 0.06 ± 0.03, and < 0.02 for ρπ, ηπ, KK¯, and η′π, respectively, in good agreement with other experiments.
No description provided.
A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.
Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).
Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).