Showing 10 of 1891 results
A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.
Observed number of events within bins of the four-jet mass and the average mass of the two dijets.
Observed number of events within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the average mass of the two dijets.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 1.5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 10% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 1.5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 10% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
Signal differential distributions as a function of four-jet mass for $\alpha_{\mathrm{true}}$ = 0.25, diquark masses of 2, 5, 8.6 TeV and various widths, for all $\alpha$ bins inclusively. The integral of each distribution has been normalized to unity.
The product of acceptance, $A$, and efficiency, $\varepsilon$, of a resonant signal with $\alpha_{\mathrm{true}}$ = 0.25 vs. the diquark mass for various diquark widths, and for all $\alpha$ bins inclusively. The acceptance is defined as the fraction of generated events passing the kinematic selection criteria, while the efficiency is the fraction of signal events satisfying $m_{\mathrm{4j}} > 1.6$ TeV. We also show the signal acceptance alone in the curves where $\varepsilon = 1$.
The four-jet mass distribution in data for 0.22 < $\alpha$ < 0.24, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.24 < $\alpha$ < 0.26, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.26 < $\alpha$ < 0.28, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.28 < $\alpha$ < 0.30, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.30 < $\alpha$ < 0.32, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.32 < $\alpha$ < 0.34, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The inclusive four-jet mass distribution in data for $\alpha$ > 0.10, fitted with three background-only functions (Dijet-5p, PowExp-5p and ModDijet-5p), each with five free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 1.5%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 1.5%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 5%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 5%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.11$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.13$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.15$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.17$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.19$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.21$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.23$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.27$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.29$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.31$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.33$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.42$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.11$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.13$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.15$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.17$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.19$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.21$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.23$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.27$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.29$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.31$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.33$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.42$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
Observed local $p$-value for a four-jet resonance, Y, decaying to a pair of dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}}/M_{\mathrm{Y}}$ = 0.25, and various widths of Y superimposed.
Observed local $p$-value for a four-jet resonance, Y, decaying to a pair of dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}}/M_{\mathrm{Y}}$ = 0.29, and various widths of Y superimposed.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 2.0$ TeV, $M_{\chi} = 0.5$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 5.0$ TeV, $M_{\chi} = 1.25$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 8.6$ TeV, $M_{\chi} = 2.15$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.
Summary of the limits obtained for the Wilson coefficients.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHuRe1122 versus cHuRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHdRe1122 versus cHdRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cW versus cWtil. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHuRe1122 versus cHuRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHdRe1122 versus cHdRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cW versus cWtil. Other Wilson coefficients are profiled as well.
Results from the study of the rare decays $K^+\toπ^+ν\barν$, $K^{+}\rightarrowπ^{+}μ^{+}μ^{-}$ and $K^{+}\rightarrowπ^{+}γγ$ at the NA62 experiment at CERN are interpreted in terms of improved limits for $\rm{B}(K^+\toπ^+X)$ and coupling parameters of hidden-sector models, where $X$ is a mediator. World-leading limits are achieved for dark photon, dark scalar and axion-like particle models.
Number of expected and observed events as a function of squared missing mass.
Number of expected and observed events as a function of squared missing mass.
Single Event Sensitivity (SES) for the $K^{+}\rightarrow\pi^{+}X$ search as a function of X mass.
Single Event Sensitivity (SES) for the $K^{+}\rightarrow\pi^{+}X$ search as a function of X mass.
Model-independent constraints on the branching ratio of the $K^{+}\rightarrow\pi^{+}X$ decay
Model-independent constraints on the branching ratio of the $K^{+}\rightarrow\pi^{+}X$ decay
Observed model-independent upper limits at 90 % CL of $\mathcal{B}(K^{+}\rightarrow\pi^{+}X)$ as function of $X$ mass, for several $X$ lifetime hypotheses, assuming $X$ decays to visible SM particles.
Observed model-independent upper limits at 90 % CL of $\mathcal{B}(K^{+}\rightarrow\pi^{+}X)$ as function of $X$ mass, for several $X$ lifetime hypotheses, assuming $X$ decays to visible SM particles.
Di-muon mass spectrum of selected $K^{+}\rightarrow\pi^{+}\mu^{+}\mu^{-}$ events from 2017–2018 data.
Di-muon mass spectrum of selected $K^{+}\rightarrow\pi^{+}\mu^{+}\mu^{-}$ events from 2017–2018 data.
Expected and observed model-independent upper limits at 90 % CL for $\mathcal{B}(K^{+}\rightarrow\pi^{+}X)\times\mathcal{B}(X\rightarrow\mu^{+}\mu^{-})$ as a function of $m_{X}$ for $\tau_{X}=0$.
Expected and observed model-independent upper limits at 90 % CL for $\mathcal{B}(K^{+}\rightarrow\pi^{+}X)\times\mathcal{B}(X\rightarrow\mu^{+}\mu^{-})$ as a function of $m_{X}$ for $\tau_{X}=0$.
Observed model-independent upper limits at 90 % CL for $\mathcal{B}(K^{+}\rightarrow\pi^{+}X)\times\mathcal{B}(X\rightarrow\mu^{+}\mu^{-})$ for several $\tau_{X}$ values.
Observed model-independent upper limits at 90 % CL for $\mathcal{B}(K^{+}\rightarrow\pi^{+}X)\times\mathcal{B}(X\rightarrow\mu^{+}\mu^{-})$ for several $\tau_{X}$ values.
Branching ratio of the $K^{+}\rightarrow\pi^{+}A^{\prime}$ decay divided by the kinetic mixing coupling squared, $\varepsilon^{2}$, as a function of $m_{A^{\prime}}$ for the BC2 model with dark photon $A^{\prime}$.
Branching ratio of the $K^{+}\rightarrow\pi^{+}A^{\prime}$ decay divided by the kinetic mixing coupling squared, $\varepsilon^{2}$, as a function of $m_{A^{\prime}}$ for the BC2 model with dark photon $A^{\prime}$.
Excluded region, at 90 % CL, of the parameter space $(m_{A^{\prime}},\varepsilon)$ for a dark photon $A^{\prime}$, decaying invisibly, in the BC2 model for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded region, at 90 % CL, of the parameter space $(m_{A^{\prime}},\varepsilon)$ for a dark photon $A^{\prime}$, decaying invisibly, in the BC2 model for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded region, at 90 % CL, of the parameter space $(m_{A^{\prime}},\varepsilon)$ for a dark photon $A^{\prime}$, decaying invisibly, in the BC2 model for the NA62 $\pi^{0}\rightarrow{\rm inv}$ search.
Excluded region, at 90 % CL, of the parameter space $(m_{A^{\prime}},\varepsilon)$ for a dark photon $A^{\prime}$, decaying invisibly, in the BC2 model for the NA62 $\pi^{0}\rightarrow{\rm inv}$ search.
Branching ratio of the $K^{+}\rightarrow\pi^{+}S$ decay divided by $\text{sin}^{2}\theta$, as a function of $m_{S}$.
Branching ratio of the $K^{+}\rightarrow\pi^{+}S$ decay divided by $\text{sin}^{2}\theta$, as a function of $m_{S}$.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta)$ for a dark scalar $S$, in the BC4-inv model for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta)$ for a dark scalar $S$, in the BC4-inv model for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta)$ for a dark scalar $S$, in the BC4-inv model for the NA62 $\pi^{0}\rightarrow{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta)$ for a dark scalar $S$, in the BC4-inv model for the NA62 $\pi^{0}\rightarrow{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta$) for a dar scalar S, in the BC4 model, from the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta$) for a dar scalar S, in the BC4 model, from the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta$) for a dar scalar S, in the BC4 model, from the NA62 $K^{+}\rightarrow\pi^{+}\mu^{+}\mu^{-}$ study.
Excluded regions, at 90 % CL, of the parameter space $(m_{S},\rm{sin}^{2}\theta$) for a dar scalar S, in the BC4 model, from the NA62 $K^{+}\rightarrow\pi^{+}\mu^{+}\mu^{-}$ study.
Branching ratio of the $K^{+}\rightarrow\pi^{+}a$ decay divided by $(C_{ff}/\Lambda)^{2}$, as a function of $m_{a}$, assuming Λ = 1 TeV.
Branching ratio of the $K^{+}\rightarrow\pi^{+}a$ decay divided by $(C_{ff}/\Lambda)^{2}$, as a function of $m_{a}$, assuming Λ = 1 TeV.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\Lambda)$ for an ALP $a$, in the BC10-inv model, evaluated assuming $\Lambda = 1$ TeV, for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\Lambda)$ for an ALP $a$, in the BC10-inv model, evaluated assuming $\Lambda = 1$ TeV, for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\Lambda)$ for an ALP $a$, in the BC10-inv model, evaluated assuming $\Lambda = 1$ TeV, for the NA62 $\pi^{0}\rightarrow\rm{inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\Lambda)$ for an ALP $a$, in the BC10-inv model, evaluated assuming $\Lambda = 1$ TeV, for the NA62 $\pi^{0}\rightarrow\rm{inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\lambda)$ for an ALP $a$, in the BC10 model, evaluated assuming $\Lambda = 1$ TeV for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\lambda)$ for an ALP $a$, in the BC10 model, evaluated assuming $\Lambda = 1$ TeV for the NA62 $K^{+}\rightarrow\pi^{+}X_{\rm inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\lambda)$ for an ALP $a$, in the BC10 model, evaluated assuming $\Lambda = 1$ TeV for the NA62 $\pi^{0}\rightarrow\rm{inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\lambda)$ for an ALP $a$, in the BC10 model, evaluated assuming $\Lambda = 1$ TeV for the NA62 $\pi^{0}\rightarrow\rm{inv}$ search.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\lambda)$ for an ALP $a$, in the BC10 model, evaluated assuming $\Lambda = 1$ TeV for the NA62 $K^{+}\rightarrow\pi^{+}\mu^{+}\mu^{-}$ study.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{ff}/\lambda)$ for an ALP $a$, in the BC10 model, evaluated assuming $\Lambda = 1$ TeV for the NA62 $K^{+}\rightarrow\pi^{+}\mu^{+}\mu^{-}$ study.
Branching ratio of the $K^{+}\rightarrow\pi^{+}a$ decay divided by $(C_{GG}/\Lambda)^{2}$, as a function of $m_{a}$, assuming $\Lambda = 1$ TeV.
Branching ratio of the $K^{+}\rightarrow\pi^{+}a$ decay divided by $(C_{GG}/\Lambda)^{2}$, as a function of $m_{a}$, assuming $\Lambda = 1$ TeV.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{GG}/\Lambda)$ for an ALP $a$, of the BC11 model, evaluated assuming $\Lambda = 1$ TeV, from the NA62 search for $K^{+}\rightarrow\pi^{+}X_{\rm inv}$.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{GG}/\Lambda)$ for an ALP $a$, of the BC11 model, evaluated assuming $\Lambda = 1$ TeV, from the NA62 search for $K^{+}\rightarrow\pi^{+}X_{\rm inv}$.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{GG}/\Lambda)$ for an ALP $a$, of the BC11 model, evaluated assuming $\Lambda = 1$ TeV, from the NA62 search for $\pi^{0}\rightarrow\rm{inv}$.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{GG}/\Lambda)$ for an ALP $a$, of the BC11 model, evaluated assuming $\Lambda = 1$ TeV, from the NA62 search for $\pi^{0}\rightarrow\rm{inv}$.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{GG}/\Lambda)$ for an ALP $a$, of the BC11 model, evaluated assuming $\Lambda = 1$ TeV, from the NA62 $K^{+}\rightarrow\pi^{+}\gamma\gamma$ study.
Excluded regions, at 90 % CL, of the parameter space $(m_{a}, C_{GG}/\Lambda)$ for an ALP $a$, of the BC11 model, evaluated assuming $\Lambda = 1$ TeV, from the NA62 $K^{+}\rightarrow\pi^{+}\gamma\gamma$ study.
A measurement of the angular structure of jets containing a prompt D$^0$ meson and of inclusive jets in proton-proton collisions at the LHC at a center-of-mass energy of 5.02 TeV is presented. The data corresponding to an integrated luminosity of 301 pb$^{-1}$ were collected by the CMS experiment in 2017. Two jet grooming algorithms, late-$k_\mathrm{T}$ and soft drop, are used to study the intrajet radiation pattern using iterative Cambridge$-$Aachen declustering. The splitting-angle distributions of jets with transverse momentum ($p_\mathrm{T}$) of around 100 GeV, obtained with these two algorithms, show that there is a shift of the distribution for jets containing a prompt D$^0$ meson with respect to inclusive jets. The shift observed in the late-$k_\mathrm{T}$ grooming approach is consistent with the dead-cone effect, whereas the shift for splittings selected with the soft-drop algorithm appears to be dominated by gluon splitting to charm quark-antiquark pairs. The measured distributions are corrected to the particle level and can be used to constrain model predictions for the substructure of high-$p_\mathrm{T}$ charm quark jets.
The unfolded late-$k_{T}$ angular distribution for prompt $D^{0}$ jets.
The unfolded late-$k_{T}$ angular distribution for inclusive jets.
The unfolded SD angular distribution for prompt $D^{0}$ jets.
The unfolded SD angular distribution for inclusive jets.
The ratio of late-$k_{T}$ angular distribution for prompt $D^{0}$ jets to inclusive jets
The ratio of SD angular distribution for prompt $D^{0}$ jets to inclusive jets
The first measurement of pseudorapidity and azimuthal angle distributions relative to the momentum vector of a Z boson for low transverse momentum ($p_\mathrm{T}$) charged hadrons in lead-lead (PbPb) collisions is presented. By studying the hadrons produced in an event with a high-$p_\mathrm{T}$ Z boson (40 $\lt$$p_\mathrm{T}$$\lt$ 350 GeV), the analysis probes how the quark-gluon plasma (QGP) medium created in these collisions affects the parton recoiling opposite to the Z boson. Utilizing PbPb data at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}$ = 5.02 TeV from 2018 with an integrated luminosity of 1.67 nb$^{-1}$ and proton-proton (pp) data at the same energy from 2017 with 301 pb$^{-1}$, the distributions are examined in bins of charged-hadron $p_\mathrm{T}$. A significant modification of the distributions for charged hadrons in the range 1$\lt$$p_\mathrm{T}$$\lt$ 2 GeV in PbPb collisions is observed when compared to reference measurements from pp collisions. The data provide new information about the correlation between hard and soft particles in heavy ion collisions, which can be used to test predictions of various jet quenching models. The results are consistent with expectations of a hydrodynamic wake created when the QGP is depleted of energy by the parton propagating through it. Based on comparisons of PbPb data with pp references and predictions from theoretical models, this Letter presents the first evidence of medium-recoil and medium-hole effects caused by a hard probe.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-90% collisions.
A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.
LO-to-NNLO K-factors for the A resonance signals, as a function of mass.
LO-to-NNLO K-factors for the A-SM interference signals, as a function of mass.
LO-to-NNLO K-factors for the H resonance signals, as a function of mass.
LO-to-NNLO K-factors for the H-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the A resonance signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the A-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the H resonance signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the H-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
A search for Higgs boson pair production in the $b \overline{b} γγ$ final state is performed. The proton-proton collision dataset in this analysis corresponds to an integrated luminosity of 308 fb$^{-1}$, consisting of two samples, 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV and 168 fb$^{-1}$ at 13.6 TeV, recorded between 2015 and 2024 by the ATLAS detector at the CERN Large Hadron Collider. In addition to a larger dataset, this analysis improves upon the previous search in the same final state through several methodological and technical developments. The Higgs boson pair production cross section divided by the Standard Model prediction is found to be $μ_{HH} = 0.9^{+1.4}_{-1.1}$ ($μ_{HH} = 1^{+1.3}_{-1.0}$ expected), which translates into a 95% confidence-level upper limit of $μ_{HH}<3.8$. At the same confidence level the Higgs self-coupling modifier is constrained to be in the range $-1.7 < κ_λ< 6.6$ ($-1.8 < κ_λ< 6.9$ expected).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
The 95% CL upper limits on the signal strength, obtained with separate fits to Run-2 and Run-3 data as well as their combination. When computing the significance or upper limit for one data-taking period only, $\mu_{HH}$ of the other period is left free to vary. All other parameters of interest are fixed to their SM expectation.
Observed profile likelihood scans of $\kappa_\lambda$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Expected profile likelihood scans of $\kappa_\lambda$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Observed profile likelihood scans of $\kappa_{2V}$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Expected profile likelihood scans of $\kappa_{2V}$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Confidence level contours at 68% (solid line) and 95% (dashed line) in the $(\kappa_\lambda, \kappa_{2V})$ parameter space, when all other coupling modifiers are fixed to their SM predictions. The corresponding expected contours are shown by the inner and outer shaded regions The SM prediction is indicated by the star, while the best-fit value is denoted by the cross.
Confidence level contours at 68% (solid line) and 95% (dashed line) in the $(\kappa_\lambda, \kappa_{2V})$ parameter space, when all other coupling modifiers are fixed to their SM predictions. The corresponding expected contours are shown by the inner and outer shaded regions The SM prediction is indicated by the star, while the best-fit value is denoted by the cross.
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. 3he lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
The expected number of events (estimated by using simulation) from the SM HH signals and single Higgs boson production, and the expected number of events from the continuum background, evaluated in the 120 GeV < $m_{\gamma\gamma}$ < 130 GeV window in Run 3 for the different low-mass (LM) and high-mass (HM) categories. For comparison, the number of data events is also shown. The uncertainties in the HH signals and single Higgs boson backgrounds include the systematic uncertainties discussed in Section 6. Asymmetric uncertainties arise primarily from the theory calculation of the SM ggF HH cross section and the large uncertainty in the yield of single Higgs bosons produced in ggF events in association with heavy-flavour jets. The uncertainty in the continuum background is given by the sum in quadrature of the statistical uncertainty from the fit to the data and the spurious signal uncertainty.
This paper presents a search for physics beyond the Standard Model targeting a heavy resonance visible in the invariant mass of the lepton-jet system. The analysis focuses on final states with a high-energy lepton and jet, and is optimised for the resonant production of leptoquarks-a novel production mode mediated by the lepton content of the proton originating from quantum fluctuations. Four distinct and orthogonal final states are considered: $e$+light jet, $μ$+light jet, $e$+$b$-jet, and $μ$+$b$-jet, constituting the first search at the Large Hadron Collider for resonantly produced leptoquarks with couplings to electrons and muons. Events with an additional same-flavour lepton, as expected from higher-order diagrams in the signal process, are also included in each channel. The search uses proton-proton collision data from the full Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, and from a part of Run 3 (2022-2023), corresponding to 55 fb$^{-1}$ at $\sqrt{s} = 13.6$ TeV. No significant excess over Standard Model predictions is observed. The results are interpreted as exclusion limits on scalar leptoquark ($\tilde{S}_1$) production, substantially improving upon previous ATLAS constraints from leptoquark pair production for large coupling values. The excluded $\tilde{S}_1$ mass ranges depend on the coupling strength, reaching up to 3.4 TeV for quark-lepton couplings $y_{de} = 1.0$, and up to 4.3 TeV, 3.1 TeV, and 2.8 TeV for $y_{sμ}$, $y_{be}$, and $y_{bμ}$ couplings set to 3.5, respectively.
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>de</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the e+light-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>de</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13]. Constraints from weak charge measurements of protons and nuclei on y<sub>de</sub> couplings derived by Ref. [10] are shown as light magenta line.
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>sμ</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the μ+light-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>sμ</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13].
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>be</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the e+b-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>be</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13].
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>bμ</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the μ+b-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>bμ</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13].
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Event selection cutflows of SR-1L-$eb$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{be} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$eb$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{be} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-1L-$ej$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{de} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$ej$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{de} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-1L-$\mu b$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{b\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$\mu b$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{b\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-1L-$\mu j$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{s\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$\mu j$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{s\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of 140 $\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3(\text{stat.})\pm1.4(\text{syst.})\pm 0.3(\text{scale})\pm 0.2(\text{PDF}\oplusα_\text{S})$ GeV, which is in good agreement with other top-quark mass results.
Unfolded number of events in the 2-to-3measurement (not normalized). The parton level is defined with two stable top-quarks and a jet with $p_{T}>50$ GeV and $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)
Covariance matrix for statistical and systematic effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)
Unfolded $R(\rho_{s})$ observable in the 2-to-3 measurement (normalized and divided by bin width). The parton level is defined with two stable top-quarks and a jet with $p_{T}>50$ GeV and $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-3 measurement (normalized)
Covariance matrix for statistical and systematic effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-3 measurement (normalized)
Impact of systematic uncertainties on the 2-to-3 unfolded observable. Values are given in percentage of bin content.
Central value and breakdown of the uncertainties affecting the top-quark pole mass extraction from the 2-to-3 unfolded observable.
Unfolded number of events in the 2-to-7measurement (not normalized). The parton level is defined with two neutrinos, one electron and one muon of opposite electric charges, two $b$-jets and an additional jet (extrajet). The four-momentum of the sum of neutrinos has transverse component larger than 30 GeV. The $p_{T}$-leading lepton has $p_{T}>28$ GeV, while the sub-leading has $p_{T}>20$ GeV. The two $b$-jets with have $p_{T}>30$ GeV and the extrajet has $p^\text{extrajet}_{T}>60$ GeV. All the leptons and jets are separated by $\Delta R >0.4$ and have $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured number of events after unfolding, for the 2-to-7 measurement (not normalized)
Covariance matrix for statistical and systematic effects of the measured number of events after unfolding, for the 2-to-7 measurement (not normalized)
Unfolded $R(\rho_{s})$ observable in the 2-to-7 measurement (normalized and divided by bin width). The parton level is defined with two neutrinos, one electron and one muon of opposite electric charges, two $b$-jets and an additional jet (extrajet). The four-momentum of the sum of neutrinos has transverse component larger than 30 GeV. The $p_{T}$-leading lepton has $p_{T}>28$ GeV, while the sub-leading has $p_{T}>20$ GeV. The two $b$-jets with have $p_{T}>30$ GeV and the extrajet has $p^\text{extrajet}_{T}>60$ GeV. All the leptons and jets are separated by $\Delta R >0.4$ and have $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-7 measurement (normalized)
Covariance matrix for statistical and systematic effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-7 measurement (normalized)
Impact of systematic uncertainties on the 2-to-7 unfolded observable. Values are given in percentage of bin content.
Central value and breakdown of the uncertainties affecting the top-quark pole mass extraction from the 2-to-7 unfolded observable.
The results of a search for the production of two scalar bosons in final states with two photons and two tau leptons are presented. The search considers both nonresonant production of a Higgs boson pair, HH, and resonant production via a new boson X which decays either to HH or to H and a new scalar Y. The analysis uses up to 138 fb$^{-1}$ of proton-proton collision data, recorded between 2016 and 2018 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV. No evidence for signal is found in the data. For the nonresonant production, the observed (expected) upper limit at 95% confidence level (CL) on the HH production cross section is set at 930 (740) fb, corresponding to 33 (26) times the standard model prediction. At 95% CL, HH production is observed (expected) to be excluded for values of $κ_λ$ outside the range between $-$12 ($-$9.4) and 17 (15). Observed (expected) upper limits at 95% CL for the XHH cross section are found to be within 160 to 2200 (200 to 1800) fb, depending on the mass of X. In the X $\to$ Y($γγ$)H($ττ$) search, the observed (expected) upper limits on the product of the production cross section and decay branching fractions vary between 0.059$-$1.2 fb (0.087$-$0.68 fb). For the X $\to$ Y($γγ$)H($ττ$) search the observed (expected) upper limits on the product of the production cross section and Y $to$ $γγ$ branching fraction vary between 0.69$-$15 fb (0.73$-$8.3 fb) in the low Y mass search, tightening constraints on the next-to-minimal supersymmetric standard model, and between 0.64$-$10 fb (0.70$-$7.6 fb) in the high Y mass search.
Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, as a function of the Higgs boson self-coupling strength modifier $\kappa_\lambda$. All Higgs boson couplings other than $\lambda$ are assumed to have the values predicted in the SM.
Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, for thirteen different BSM benchmark scenarios from [arXiv:1507.02245, arXiv:1806.05162] which consider different values of the couplings, $\kappa_\lambda$, $\kappa_t$, $c_{2g}$, $c_g$, and $c_2$ (defined in Table 1).
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new spin-0 particle $\mathrm{X}^{(0)}$ which decays to Higgs boson pairs, $\sigma(\mathrm{pp} \to \mathrm{X}^{(0)} \to \mathrm{HH})$, given for different values of $m_\mathrm{X}$ in the range 260-1000 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new spin-2 particle $\mathrm{X}^{(2)}$ which decays to Higgs boson pairs, $\sigma(\mathrm{pp} \to \mathrm{X}^{(2)} \to \mathrm{HH})$, given for different values of $m_\mathrm{X}$ in the range 260-1000 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$ which subsequently decay to a pair of photons and a pair of tau leptons, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH} \to \gamma\gamma\tau\tau)$. The limits are shown for different values of $m_\mathrm{Y}$ in the range 50-800 GeV and at particular values of $m_\mathrm{X}$ in the range 300-1000 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$ which subsequently decay to a pair of photons and a pair of tau leptons, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH} \to \gamma\gamma\tau\tau)$. The limits are shown for different values of $m_\mathrm{X}$ in the range 300-1000 GeV and at particular values of $m_\mathrm{Y}$ in the range 50-800 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$ which subsequently decay to a pair of photons and a pair of tau leptons, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH} \to \gamma\gamma\tau\tau)$. The limits are shown for different values of $m_\mathrm{X}$ in the range 300-1000 GeV and $m_\mathrm{Y}$ in the range 50-800 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$, multiplied by the $\mathrm{Y} \to \gamma\gamma$ branching fraction, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH})B(\mathrm{Y} \to \gamma\gamma)$. The limits are shown for different values of $m_\mathrm{Y}$ in the range 70-125 GeV and at particular values of $m_\mathrm{X}$ in the range 300-1000 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$, multiplied by the $\mathrm{Y} \to \gamma\gamma$ branching fraction, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH})B(\mathrm{Y} \to \gamma\gamma)$. The limits are shown for different values of $m_\mathrm{X}$ in the range 300-800 GeV and at particular values of $m_\mathrm{Y}$ in the range 70-125 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$, multiplied by the $\mathrm{Y} \to \gamma\gamma$ branching fraction, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH})B(\mathrm{Y} \to \gamma\gamma)$. The limits are shown for different values of $m_\mathrm{X}$ in the range 300-1000 GeV and $m_\mathrm{Y}$ in the range 70-125 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$, multiplied by the $\mathrm{Y} \to \gamma\gamma$ branching fraction, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH})B(\mathrm{Y} \to \gamma\gamma)$. The limits are shown for different values of $m_\mathrm{Y}$ in the range 125-800 GeV and at particular values of $m_\mathrm{X}$ in the range 300-1000 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$, multiplied by the $\mathrm{Y} \to \gamma\gamma$ branching fraction, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH})B(\mathrm{Y} \to \gamma\gamma)$. The limits are shown for different values of $m_\mathrm{X}$ in the range 300-800 GeV and at particular values of $m_\mathrm{Y}$ in the range 125-800 GeV.
Observed and expected 95% CL upper limits on the cross section for the resonant production of a new scalar particle $\mathrm{X}$ which decays to a SM Higgs boson and a new scalar particle $\mathrm{Y}$, multiplied by the $\mathrm{Y} \to \gamma\gamma$ branching fraction, $\sigma(\mathrm{pp} \to \mathrm{X} \to \mathrm{YH})B(\mathrm{Y} \to \gamma\gamma)$. The limits are shown for different values of $m_\mathrm{X}$ in the range 300-1000 GeV and $m_\mathrm{Y}$ in the range 125-800 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.