We have measured the p p differential elastic cross section at 8 momenta from 353 to 578 MeV/ c , determining, for each momentum, the ratio ρ of the real to imaginary parts of the elastic forward amplitude, the slope b of the elastic cross section and the total p p cross section σ. Our results are compared with previous experimental results and with theoretical predictions.
No description provided.
Numerical values supplied by M. Cresti.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.
The differential cross section for neutron-proton elastic scattering was measured in the diffraction region with incident-neutron momenta between 8 and 30 GeV/c. The experiment was a spark-chamber-counter experiment, conducted at the alternating-gradient synchrotron. Results are presented and compared with currently available lower energy np data and comparable energy pp data.
No description provided.
None
'1'. '2'. '3'.
No description provided.
No description provided.
The differential cross section for neutron-deuteron elastic scattering was measured for four-momentum transfers 0.3 < − t < 2.0 (GeV/c) 2 with incident neutron momenta between 6 and 12.5 GeV/c. The measurement was made with spark chambers at the Argonne ZGS. Results are compared with proton-deuteron elastic scattering at comparable energies as a test of isospin invariance in strong interactions and with the predictions of the Glauber multiple scattering theory. Very good agreement is found.
UNPUBLISHED DATA.
No description provided.
UNPUBLISHED DATA.
The differential elastic scattering cross section for 2.7 GeV c antiprotons on protons has been studied using film from the 20″ BNL hydrogen bubble chamber. The diffraction pattern based on a total sample of 7300 events shows a sharp forward maximum, a first diffraction minimum, and a second maximum. The forward diffraction peak is fitted by ( d σ d t ) elastic =[325 ± 6 mb ( GeV c ) 2 ] exp [−13.3 ± 0.2( GeV c ) −2 t and the total elastic cross section is found to be 25.6 ± 0.6 mb. The first and second diffraction peaks are fitted by the optical model formula for a “black” disc. d σ d t ∼ [j 1 (2k R sin 1 2 θ)] 2 (1 + a cos θ) 2 where R = 1.2 fm and a = −5.
No description provided.
Direct measurements were made of neutron-proton elastic scattering differential cross sections at high energies. A neutron beam with a continuous momentum spectrum between 1.2 and 6.7 GeV/c was scattered off a liquid hydrogen target, and spark chambers were used to determine the neutron scattering angle and, in a proton spectrometer, to measure the momentum and scattering angle of the recoil proton. Differential cross sections are presented over the incident neutron momentum range in intervals of the order of 0.5-GeV/c wide. The cross sections have an exponential peak in the forward direction and then flatten and become isotropic about the 90° c.m. scattering angle. At larger angles, the cross sections again rise towards the expected charge-exchange peak, which was not within the range of this experiment. There is little evidence of any other structure in the cross section. Values are presented for the slope of the diffraction peak, and comparisons are made between these slopes, and the 90° c.m. cross sections, for pp and np elastic scattering. The results presented here differ from those previously reported because of an error in a Monte Carlo calculation and in the availability of improved data on the real part of the np elastic scattering amplitude. At 5 GeV/c, a direct comparison of pp and np data allows the I=0 differential cross section to be extracted. The np data have been fitted in powers of cosθc.m. for |cosθc.m.|<0.8 for each energy range.
No description provided.
No description provided.
No description provided.
None
No description provided.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
We have measured differential cross sections for K−p→Σ+π− and π−p→pπ− at 3.0 and 5.1 GeV/c near the backward direction. At 3.0 GeV/c both have a dip near −u∼0.1 (GeV/c)2. At 5.1 GeV/c, dσdu for π−p→pπ− falls exponentially with slope 3.8±0.1 (GeV/c)−2 whereas dudσ for K−p→Σ+π− exhibits a decreasing slope for larger |u|. These data are discussed in terms of SU(3), and the relative importance of the helicity-flip and -non-flip amplitudes is investigated.
No description provided.