A partial-wave analysis of the (K ππ ) 0 system produced in the charge exchange reaction K − p →( K 0 π + π − ) n has been made in the mass range 1.04 ⩽ M (K ππ ) < 1.56 GeV c data at 8, 10 and 16 GeV/ c . It was found that in about 2 3 of the cases, the (K ππ ) 0 system is produced in states of unnatural spin-parity, namely J P = 0 − and 1 + ; the rest is in the natural spin-parity state J P = 2 + state is consistent with being all K ∗ (1420). The unnatural spin-parity states are produced mostly (∼ 80% of the events) by natural parity exchange. The facts that unnatural spin-parity states are produced in this non-diffractive channel, with J P = 1 + dominant, and that the exchange responsible for their production is mostly of natural parity, are similar to what was found for the charged (K ππ ) − system in the diffractive reaction K − p→(K ππ ) − p. However, the absolute value and the energy dependence of the cross sections are very different in the two cases.
CORRECTED FOR UNSEEN AK0 DECAY MODES.
ACTUALLY CROSS SECTIONS FOR PRODUCTION IN MASS REGION 1.04 < M(AK0 PI+ PI-) < 1.56 GEV IN THE STATES JP = 1+, 2+ AND 0- RESPECTIVELY.
We report on the measurement of asymmetries in the single-pion photoproduction reactions γp→nπ+, γp→pπ0, and γn→pπ−, induced by linearly polarized photons of energies from 610 to 940 MeV. The experiment was carried out using the back-scattered laser beam and the 82-in. dubble chamber at SLAC. We compare the new data with predictions from a partial-wave analysis.
No description provided.
No description provided.
No description provided.
In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.
The process pn → pp π − is studied in pd collisions at 11.6 GeV/ c . A broad low-mass enhancement of p π − is found in the diffractive reaction pn → p(p π − ) with a cross section slightly smaller than that of a similar analysis at 7.0 GeV/ c . The non-diffractive reaction pn → (p π − )p shows some evidence for resonance production and its cross-section dependence on energy is characteristic of meson exchange. Samples of mass, momentum transfer, and decay angular distributions are compared with the predictions of a double Regge model and a reggeized one-pion exchange model. Using in addition information from the reactions pp → pp π 0 , pp → pn π + at 12.0 GeV/ c , an isospin analysis of the single pion production reaction from nucleon-nucleon scattering, N 1 N 2 → N 3 (N 4 π ) is presented.
NON-DIFFRACTIVE CHARGE-EXCHANGE CROSS SECTIONS.
K + p elastic scattering is studied at incident K + beam momenta of 2.53, 2.76 and 3.20 GeV/ c . From the analysis of about 10 000 elastic events at each energy, we present data on the forward and backward elastic scattering peaks. No structure is observed in the forward peak for − t ⩽ 2 (GeV/ c ) 2 . In addition, the statistics available from this exposure permit a measurement of the differential cross sections near 90° in the center of mass system. These results exhibit a strong energy dependence and are compared to similar results at other energies.
No description provided.
No description provided.
THE QUOTED ERRORS ARE STATISTICAL.
Measurements of differential cross sections for pi-zero photoproduction from protons have been made at angles between 60° and 140° c.m. in the photon energy range 0.7 GeV to 1.7 GeV. The data are compared with the rits provided by three recent partial-wave analyses of pion photoproduction and some significant discrepancies observed.
.
.
.
Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
Proton and antiproton total cross sections on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. The proton cross sections rise with increasing momentum. Antiproton cross sections fall with increasing momentum, but the rate of fall decreases between 50 and 150 GeV/c, and from 150 to 200 GeV/c there is little change in cross section.
No description provided.
ANTIPARTICLE-PARTICLE CROSS SECTION DIFFERENCES.
Total cross sections of π± and K± on protons and deuterons have been measured at 50, 100, 150, and 200 GeV/c. All of the cross sections rise with increasing momentum.
No description provided.
PARTICLE-ANTIPARTICLE CROSS SECTION DIFFERENCES - SOME COMMON ERRORS CANCEL.
We present the results of a formation experiment for the reaction K − p → Λπ 0 in the cms energy between 2200 and 2436 MeV with a total statistics of 10 eV/μb. A partial-wave analysis including these new data gives evidence for the existence of three resonances in the P 3 , D 5 and G 9 (or H 11 ) states in this mass region.
No description provided.
No description provided.
No description provided.