Showing 10 of 24 results
We report the exclusive photoproduction cross sections for the Sigma(1385), Lambda(1405), and Lambda(1520) in the reactions gamma + p -> K+ + Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective Lagrangian approach and fitted to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Lambda(1405) region are strikingly different for the Sigma+pi-, Sigma0 pi0, and Sigma- pi+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.
.
.
.
.
.
.
.
.
.
.
The elastic scattering of photons by protons has been measured for 100 MeV to 290 MeV photons at 90° c.m.s. and 139° c.m.s. scattering angles. The expected large increase in cross-section is observed at energies approaching that of (3/2, 3/2) pion-nucleon resonance. The scattering can be qualitatively explained by the ordinary Thomson amplitude combined with that of the (3/2, 3/2) resonance. A more detailed examination of the cross-section in the region just above the photo-meson threshold has shown that it is sensitive to the π0 photon coupling. From the experimental data, one may conclude that the π0 mean life should be between 10−16 and 10−18 s.
No description provided.
We report the first measurement of the differential cross section on $\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections $\frac{d\sigma}{dt}$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic $\phi$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $\phi$ mesons.
Differential cross section as a function of ABS(T-TMIN).
High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.72 to 1.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.73 to 1.74 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.74 to 1.75 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.75 to 1.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.76 to 1.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.77 to 1.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.78 to 1.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.79 to 1.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.8 to 1.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.81 to 1.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.82 to 1.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.83 to 1.84 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.84 to 1.85 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.85 to 1.86 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.86 to 1.87 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.87 to 1.88 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.88 to 1.89 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.89 to 1.9 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.9 to 1.91 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.91 to 1.92 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.92 to 1.93 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.93 to 1.94 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.94 to 1.95 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.96 to 1.97 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.97 to 1.98 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.98 to 1.99 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.99 to 2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2 to 2.01 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.01 to 2.02 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.02 to 2.03 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.03 to 2.04 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.04 to 2.05 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.05 to 2.06 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.06 to 2.07 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.07 to 2.08 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.08 to 2.09 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.09 to 2.1 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.1 to 2.11 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.11 to 2.12 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.12 to 2.13 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.13 to 2.14 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.14 to 2.15 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.15 to 2.16 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.16 to 2.17 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.17 to 2.18 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.18 to 2.19 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.19 to 2.2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.2 to 2.21 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.21 to 2.22 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.22 to 2.23 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.23 to 2.24 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.24 to 2.25 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.25 to 2.26 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.26 to 2.27 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.27 to 2.28 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.28 to 2.29 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.29 to 2.3 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.3 to 2.31 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.31 to 2.32 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.32 to 2.33 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.33 to 2.34 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.34 to 2.35 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.35 to 2.36 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.36 to 2.37 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.37 to 2.38 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.38 to 2.39 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.39 to 2.4 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.4 to 2.41 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.41 to 2.42 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.42 to 2.43 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.43 to 2.44 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.44 to 2.45 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.45 to 2.46 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.46 to 2.47 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.47 to 2.48 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.48 to 2.49 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.49 to 2.5 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.5 to 2.51 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.51 to 2.52 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.52 to 2.53 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.53 to 2.54 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.54 to 2.55 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.55 to 2.56 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.56 to 2.57 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.57 to 2.58 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.58 to 2.59 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.59 to 2.6 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.6 to 2.61 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.61 to 2.62 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.62 to 2.63 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.63 to 2.64 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.64 to 2.65 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.65 to 2.66 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.66 to 2.67 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.67 to 2.68 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.68 to 2.69 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.69 to 2.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.7 to 2.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.71 to 2.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.72 to 2.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.75 to 2.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.76 to 2.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.77 to 2.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.78 to 2.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.79 to 2.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.8 to 2.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.81 to 2.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.82 to 2.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.83 to 2.84 GeV.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.95 to -0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.95-1.96 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.73-2.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.74-2.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.
Differential cross section for the W range 1.68 to 1.69 GeV.
Differential cross section for the W range 1.69 to 1.70 GeV.
Differential cross section for the W range 1.70 to 1.71 GeV.
Differential cross section for the W range 1.71 to 1.72 GeV.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
Differential cross section for the W range 1.75 to 1.76 GeV.
Differential cross section for the W range 1.76 to 1.77 GeV.
Differential cross section for the W range 1.77 to 1.78 GeV.
Differential cross section for the W range 1.78 to 1.79 GeV.
Differential cross section for the W range 1.79 to 1.80 GeV.
Differential cross section for the W range 1.80 to 1.81 GeV.
Differential cross section for the W range 1.81 to 1.82 GeV.
Differential cross section for the W range 1.82 to 1.83 GeV.
Differential cross section for the W range 1.83 to 1.84 GeV.
Differential cross section for the W range 1.84 to 1.85 GeV.
Differential cross section for the W range 1.85 to 1.86 GeV.
Differential cross section for the W range 1.86 to 1.87 GeV.
Differential cross section for the W range 1.87 to 1.88 GeV.
Differential cross section for the W range 1.88 to 1.89 GeV.
Differential cross section for the W range 1.89 to 1.90 GeV.
Differential cross section for the W range 1.90 to 1.91 GeV.
Differential cross section for the W range 1.91 to 1.92 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.84 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.84 GeV.
High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
Differential cross section for the W range 1.75 to 1.76 GeV.
Differential cross section for the W range 1.76 to 1.77 GeV.
Differential cross section for the W range 1.77 to 1.78 GeV.
Differential cross section for the W range 1.78 to 1.79 GeV.
Differential cross section for the W range 1.79 to 1.80 GeV.
Differential cross section for the W range 1.80 to 1.81 GeV.
Differential cross section for the W range 1.81 to 1.82 GeV.
Differential cross section for the W range 1.82 to 1.83 GeV.
Differential cross section for the W range 1.83 to 1.84 GeV.
Differential cross section for the W range 1.84 to 1.85 GeV.
Differential cross section for the W range 1.85 to 1.86 GeV.
Differential cross section for the W range 1.86 to 1.87 GeV.
Differential cross section for the W range 1.87 to 1.88 GeV.
Differential cross section for the W range 1.88 to 1.89 GeV.
Differential cross section for the W range 1.89 to 1.90 GeV.
Differential cross section for the W range 1.90 to 1.91 GeV.
Differential cross section for the W range 1.91 to 1.92 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.11 GeV.
Differential cross section for the W range 2.11 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.13 GeV.
Differential cross section for the W range 2.13 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.15 GeV.
Differential cross section for the W range 2.15 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.17 GeV.
Differential cross section for the W range 2.17 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.19 GeV.
Differential cross section for the W range 2.19 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.21 GeV.
Differential cross section for the W range 2.21 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.23 GeV.
Differential cross section for the W range 2.23 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.25 GeV.
Differential cross section for the W range 2.25 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.27 GeV.
Differential cross section for the W range 2.27 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.29 GeV.
Differential cross section for the W range 2.29 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.31 GeV.
Differential cross section for the W range 2.31 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.33 GeV.
Differential cross section for the W range 2.33 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.35 GeV.
Differential cross section for the W range 2.35 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.37 GeV.
Differential cross section for the W range 2.37 to 2.38 GeV.
Differential cross section for the W range 2.38 to 2.39 GeV.
Differential cross section for the W range 2.39 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.41 GeV.
Differential cross section for the W range 2.41 to 2.42 GeV.
Differential cross section for the W range 2.42 to 2.43 GeV.
Differential cross section for the W range 2.43 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.45 GeV.
Differential cross section for the W range 2.45 to 2.46 GeV.
Differential cross section for the W range 2.46 to 2.47 GeV.
Differential cross section for the W range 2.47 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.49 GeV.
Differential cross section for the W range 2.49 to 2.50 GeV.
Differential cross section for the W range 2.50 to 2.51 GeV.
Differential cross section for the W range 2.51 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.53 GeV.
Differential cross section for the W range 2.53 to 2.54 GeV.
Differential cross section for the W range 2.54 to 2.55 GeV.
Differential cross section for the W range 2.55 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.57 GeV.
Differential cross section for the W range 2.57 to 2.58 GeV.
Differential cross section for the W range 2.58 to 2.59 GeV.
Differential cross section for the W range 2.59 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.61 GeV.
Differential cross section for the W range 2.61 to 2.62 GeV.
Differential cross section for the W range 2.62 to 2.63 GeV.
Differential cross section for the W range 2.63 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.65 GeV.
Differential cross section for the W range 2.65 to 2.66 GeV.
Differential cross section for the W range 2.66 to 2.67 GeV.
Differential cross section for the W range 2.67 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.69 GeV.
Differential cross section for the W range 2.69 to 2.70 GeV.
Differential cross section for the W range 2.70 to 2.71 GeV.
Differential cross section for the W range 2.71 to 2.72 GeV.
Differential cross section for the W range 2.72 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.76 GeV.
Differential cross section for the W range 2.76 to 2.77 GeV.
Differential cross section for the W range 2.77 to 2.78 GeV.
Differential cross section for the W range 2.78 to 2.79 GeV.
Differential cross section for the W range 2.79 to 2.80 GeV.
Differential cross section for the W range 2.80 to 2.81 GeV.
Differential cross section for the W range 2.81 to 2.82 GeV.
Differential cross section for the W range 2.82 to 2.83 GeV.
Differential cross section for the W range 2.83 to 2.84 GeV.
Spin density matrix elements for the W range 1.72 to 1.73 GeV.
Spin density matrix elements for the W range 1.73 to 1.74 GeV.
Spin density matrix elements for the W range 1.74 to 1.75 GeV.
Spin density matrix elements for the W range 1.75 to 1.76 GeV.
Spin density matrix elements for the W range 1.76 to 1.77 GeV.
Spin density matrix elements for the W range 1.77 to 1.78 GeV.
Spin density matrix elements for the W range 1.78 to 1.79 GeV.
Spin density matrix elements for the W range 1.79 to 1.80 GeV.
Spin density matrix elements for the W range 1.80 to 1.81 GeV.
Spin density matrix elements for the W range 1.81 to 1.82 GeV.
Spin density matrix elements for the W range 1.82 to 1.83 GeV.
Spin density matrix elements for the W range 1.83 to 1.84 GeV.
Spin density matrix elements for the W range 1.84 to 1.85 GeV.
Spin density matrix elements for the W range 1.85 to 1.86 GeV.
Spin density matrix elements for the W range 1.86 to 1.87 GeV.
Spin density matrix elements for the W range 1.87 to 1.88 GeV.
Spin density matrix elements for the W range 1.88 to 1.89 GeV.
Spin density matrix elements for the W range 1.89 to 1.90 GeV.
Spin density matrix elements for the W range 1.90 to 1.91 GeV.
Spin density matrix elements for the W range 1.91 to 1.92 GeV.
Spin density matrix elements for the W range 1.92 to 1.93 GeV.
Spin density matrix elements for the W range 1.93 to 1.94 GeV.
Spin density matrix elements for the W range 1.94 to 1.95 GeV.
Spin density matrix elements for the W range 1.95 to 1.96 GeV.
Spin density matrix elements for the W range 1.96 to 1.97 GeV.
Spin density matrix elements for the W range 1.97 to 1.98 GeV.
Spin density matrix elements for the W range 1.98 to 1.99 GeV.
Spin density matrix elements for the W range 1.99 to 2.00 GeV.
Spin density matrix elements for the W range 2.00 to 2.01 GeV.
Spin density matrix elements for the W range 2.01 to 2.02 GeV.
Spin density matrix elements for the W range 2.02 to 2.03 GeV.
Spin density matrix elements for the W range 2.03 to 2.04 GeV.
Spin density matrix elements for the W range 2.04 to 2.05 GeV.
Spin density matrix elements for the W range 2.05 to 2.06 GeV.
Spin density matrix elements for the W range 2.06 to 2.07 GeV.
Spin density matrix elements for the W range 2.07 to 2.08 GeV.
Spin density matrix elements for the W range 2.08 to 2.09 GeV.
Spin density matrix elements for the W range 2.09 to 2.10 GeV.
Spin density matrix elements for the W range 2.10 to 2.11 GeV.
Spin density matrix elements for the W range 2.11 to 2.12 GeV.
Spin density matrix elements for the W range 2.12 to 2.13 GeV.
Spin density matrix elements for the W range 2.13 to 2.14 GeV.
Spin density matrix elements for the W range 2.14 to 2.15 GeV.
Spin density matrix elements for the W range 2.15 to 2.16 GeV.
Spin density matrix elements for the W range 2.16 to 2.17 GeV.
Spin density matrix elements for the W range 2.17 to 2.18 GeV.
Spin density matrix elements for the W range 2.18 to 2.19 GeV.
Spin density matrix elements for the W range 2.19 to 2.20 GeV.
Spin density matrix elements for the W range 2.20 to 2.21 GeV.
Spin density matrix elements for the W range 2.21 to 2.22 GeV.
Spin density matrix elements for the W range 2.22 to 2.23 GeV.
Spin density matrix elements for the W range 2.23 to 2.24 GeV.
Spin density matrix elements for the W range 2.24 to 2.25 GeV.
Spin density matrix elements for the W range 2.25 to 2.26 GeV.
Spin density matrix elements for the W range 2.26 to 2.27 GeV.
Spin density matrix elements for the W range 2.27 to 2.28 GeV.
Spin density matrix elements for the W range 2.28 to 2.29 GeV.
Spin density matrix elements for the W range 2.29 to 2.30 GeV.
Spin density matrix elements for the W range 2.30 to 2.31 GeV.
Spin density matrix elements for the W range 2.31 to 2.32 GeV.
Spin density matrix elements for the W range 2.32 to 2.33 GeV.
Spin density matrix elements for the W range 2.33 to 2.34 GeV.
Spin density matrix elements for the W range 2.34 to 2.35 GeV.
Spin density matrix elements for the W range 2.35 to 2.36 GeV.
Spin density matrix elements for the W range 2.36 to 2.37 GeV.
Spin density matrix elements for the W range 2.37 to 2.38 GeV.
Spin density matrix elements for the W range 2.38 to 2.39 GeV.
Spin density matrix elements for the W range 2.39 to 2.40 GeV.
Spin density matrix elements for the W range 2.40 to 2.41 GeV.
Spin density matrix elements for the W range 2.41 to 2.42 GeV.
Spin density matrix elements for the W range 2.42 to 2.43 GeV.
Spin density matrix elements for the W range 2.43 to 2.44 GeV.
Spin density matrix elements for the W range 2.44 to 2.45 GeV.
Spin density matrix elements for the W range 2.45 to 2.46 GeV.
Spin density matrix elements for the W range 2.46 to 2.47 GeV.
Spin density matrix elements for the W range 2.47 to 2.48 GeV.
Spin density matrix elements for the W range 2.48 to 2.49 GeV.
Spin density matrix elements for the W range 2.49 to 2.50 GeV.
Spin density matrix elements for the W range 2.50 to 2.51 GeV.
Spin density matrix elements for the W range 2.51 to 2.52 GeV.
Spin density matrix elements for the W range 2.52 to 2.53 GeV.
Spin density matrix elements for the W range 2.53 to 2.54 GeV.
Spin density matrix elements for the W range 2.54 to 2.55 GeV.
Spin density matrix elements for the W range 2.55 to 2.56 GeV.
Spin density matrix elements for the W range 2.56 to 2.57 GeV.
Spin density matrix elements for the W range 2.57 to 2.58 GeV.
Spin density matrix elements for the W range 2.58 to 2.59 GeV.
Spin density matrix elements for the W range 2.59 to 2.60 GeV.
Spin density matrix elements for the W range 2.60 to 2.61 GeV.
Spin density matrix elements for the W range 2.61 to 2.62 GeV.
Spin density matrix elements for the W range 2.62 to 2.63 GeV.
Spin density matrix elements for the W range 2.63 to 2.64 GeV.
Spin density matrix elements for the W range 2.64 to 2.65 GeV.
Spin density matrix elements for the W range 2.65 to 2.66 GeV.
Spin density matrix elements for the W range 2.66 to 2.67 GeV.
Spin density matrix elements for the W range 2.67 to 2.68 GeV.
Spin density matrix elements for the W range 2.68 to 2.69 GeV.
Spin density matrix elements for the W range 2.69 to 2.70 GeV.
Spin density matrix elements for the W range 2.70 to 2.71 GeV.
Spin density matrix elements for the W range 2.71 to 2.72 GeV.
Spin density matrix elements for the W range 2.72 to 2.73 GeV.
Spin density matrix elements for the W range 2.73 to 2.74 GeV.
Spin density matrix elements for the W range 2.74 to 2.75 GeV.
Spin density matrix elements for the W range 2.75 to 2.76 GeV.
Spin density matrix elements for the W range 2.76 to 2.77 GeV.
Spin density matrix elements for the W range 2.77 to 2.78 GeV.
Spin density matrix elements for the W range 2.78 to 2.79 GeV.
Spin density matrix elements for the W range 2.79 to 2.80 GeV.
Spin density matrix elements for the W range 2.80 to 2.81 GeV.
Spin density matrix elements for the W range 2.81 to 2.82 GeV.
Spin density matrix elements for the W range 2.82 to 2.83 GeV.
Spin density matrix elements for the W range 2.83 to 2.84 GeV.
The exclusive reaction $\gamma p \to p \pi^+ \pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\pi^+$ and proton in CLAS, and reconstructing the $\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\pi^+\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=00) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=10) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=11) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=20) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=21) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=22) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=30) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=31) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=32) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=33) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=40) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=41) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=42) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=43) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
Moments YLM(LM=44) of the di-pion angular distribution for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
S wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
P wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
Pm wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
P0 wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
Pp wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
D wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
Dm wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
D0 wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
Dp wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
F wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
Fm wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
F0 wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Fp wave cross section for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the P-wave for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Spin density matrix elements for the interference between the S- and P-waves for -T.
Differential cross sections for the reaction $\gamma p \to n \pi^+$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.
Differential cross sections for incident photon energies 0.725, 0.775, 0.825and 0.875 GeV.
Differential cross sections for incident photon energies 0.925, 0.975, 1.025and 1.075 GeV.
Differential cross sections for incident photon energies 1.125, 1.175, 1.225and 1.275 GeV.
Differential cross sections for incident photon energies 1.325, 1.375, 1.425and 1.475 GeV.
Differential cross sections for incident photon energies 1.525, 1.575, 1.625and 1.675 GeV.
Differential cross sections for incident photon energies 1.725, 1.775, 1.825and 1.875 GeV.
Differential cross sections for incident photon energies 1.925, 1.975, 2.025and 2.075 GeV.
Differential cross sections for incident photon energies 2.125, 2.175, 2.225and 2.275 GeV.
Differential cross sections for incident photon energies 2.325, 2.375, 2.425and 2.475 GeV.
Differential cross sections for incident photon energies 2.525, 2.575, 2.625and 2.675 GeV.
Differential cross sections for incident photon energies 2.725, 2.775, 2.825and 2.875 GeV.
Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.09 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.19 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.29 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.39 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.49 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.59 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.69 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 3.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 2.99 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.09 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.19 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.29 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.39 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.49 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.59 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.69 Gev.
Differential cross section for XI- production as a function of the invariant mass of the K+ meson pair for incident photon energy 3.79 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 2.99 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.09 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.19 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.29 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.39 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.49 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.59 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.69 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of the XI- in the photon-proton cm frame for incident photon energy 3.79 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 2.99 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.09 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.19 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.29 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.39 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.49 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.59 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.69 Gev.
Differential cross section for XI- production as a function of the cosine of the polar angle of each K+ in the photon-proton cm frame for incident photon energy 3.79 Gev.
Total cross section fo XI- production.
Differential cross section for XI(1530)- production as a function of the cosine of the polar angle of the XI(1530)- in the photon-proton cm frame for incident photon energy 3.35 to 4.75 GeV.
Total cross section for XI(1530)- production.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.