We have studied the reaction e−+p→e−+π++n by detecting the final electron and pion in coincidence. Data are presented in the region of virtual photon mass squared from -0.18 to -1.2 GeV2, and virtual photoproduction center-of-mass energy and angle from 1.85 to 2.50 GeV and 0 to 20°, respectively.
No description provided.
No description provided.
No description provided.
None
No description provided.
Photoabsorption cross sections in hydrogen and deuterium have been measured from 3.7 to 17.9 GeV. The energy dependences are similar to those of strong-interaction total cross sections, as expected from the vector-meson-dominance model. The magnitude of σT(γp) can be compared with data from γp→ρ0p to determine a γ−p coupling constant, γρ24π=0.37±0.03. This value disagrees with that obtained on the ρ mass shell, and hence there is only qualitative agreement with the vector-meson-dominance model.
Axis error includes +- 1/1 contribution (CORRECTION OF ACCEPTANCE, POSSIBLE LOSSES, ETC).
The differential cross sections for the photoproduction reactions γ+p→π++n, γ+p→K++Λ0, and γ+p→K++Σ0 have ben measured for incident laboratory photon energies between 3.4 and 4.0 GeV and for meson center-of-mass angles from about 25° to 45°. The reactions were studied by observing only the charged mesons. The momenta, velocities, and angles of the mesons were measured with a magnetic spectrometer, and the equivalent of nearly monochromatic gamma rays was obtained by performing bremsstrahlung subtractions. The cross sections agree with the inequality predicted from unbroken SU(3). The measured behavior of dσdt as a function of t shows similarities to that observed in studies of mesonnucleon scattering.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.