Date

Search for nonresonant new physics signals in high-mass dilepton events produced in association with b-tagged jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-EXO-23-010, 2025.
Inspire Record 2935112 DOI 10.17182/hepdata.156189

A search for nonresonant new physics phenomena in high-mass dilepton events produced in association with b-tagged jets is performed using proton-proton collision data collected in 2016$-$2018 by the CMS experiment at the CERN LHC, at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis considers two effective field theory models with dimension-six operators; involving four-fermion contact interactions between two leptons ($\ell\ell$, electrons or muons) and b or s quarks (bb$\ell\ell$ and bs$\ell\ell$). Two lepton flavor combinations (ee and $μμ$) are required and events are classified as having 0, 1, and $\geq$2 b-tagged jets in the final state. No significant excess is observed over the standard model backgrounds. Upper limits are set on the production cross section of the new physics signals. These translate into lower limits on the energy scale $Λ$ of 6.9 to 9.0 TeV in the bb$\ell\ell$ model, depending on model parameters, and on the ratio of energy scale and effective coupling, $Λ/g_*$, of 2.0 to 2.6 TeV in the bs$\ell\ell$ model. The latter represent the most stringent limits on this model to date. Lepton flavor universality is also tested by comparing the dielectron and dimuon mass spectra for different b-tagged jet multiplicities. No significant deviation from the standard model expectation of unity is observed.

27 data tables

Signal efficiencies with Full Run 2 dimuon channel for different bbll signal scenarios

Signal efficiencies with Full Run 2 dimuon channel for different bbll (destructive interference) signal scenarios

Signal efficiencies with Full Run 2 dimuon channel in 1b final state for different bbll signal scenarios

More…

Search for top squarks in final states with many light-flavor jets and 0, 1, or 2 charged leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-23-001, 2025.
Inspire Record 2933169 DOI 10.17182/hepdata.156817

Several new physics models including versions of supersymmetry (SUSY) characterized by $R$-parity violation (RPV) or with additional hidden sectors predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for top squarks decaying to two top quarks and six additional light-flavor quarks or gluons are reported. The search employs a novel machine learning method for background estimation from control samples in data using decorrelated discriminators. The search is performed using events with 0, 1, or 2 electrons or muons in conjunction with at least six jets. No requirement is placed on the magnitude of the missing transverse momentum. The result is based on a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to 138 fb$^{-1}$ of integrated luminosity collected with the CMS detector at the LHC in 2016$-$2018. The data are used to determine upper limits on the top squark pair production cross section in the frameworks of RPV and stealth SUSY. Models with top squark masses less than 700 (930) GeV are excluded at 95% confidence level for RPV (stealth) SUSY scenarios.

32 data tables

Cutflows and signal efficiencies for the RPV SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

Cutflows and signal efficiencies for the Stealth SYY SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

Cutflows and signal efficiencies for the RPV SUSY model in the $1\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

More…

Search for the rare decay D$^0$$\to$$μ^+μ^-$ in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Phys.Rev.Lett. 135 (2025) 151803, 2025.
Inspire Record 2931458 DOI 10.17182/hepdata.158634

A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.

7 data tables

Summary of branching fraction.

Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.

The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.

More…

Search for dark matter produced in association with a Higgs boson decaying to a $\tau$ lepton pair in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-23-012, 2025.
Inspire Record 2930174 DOI 10.17182/hepdata.158037

A search for dark matter particles produced in association with a Higgs boson decaying into a pair of $\tau$ leptons is performed using data collected in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector. The analysis is based on a data set corresponding to an integrated luminosity of 101 fb$^{-1}$ collected in 2017$-$2018. No significant excess over the expected standard model background is observed. This result is interpreted within the frameworks of the 2HDM+a and baryonic Z$'$ benchmark simplified models. The 2HDM+a model is a type-II two-Higgs-doublet model featuring a heavy pseudoscalar with an additional light pseudoscalar. Upper limits at 95% confidence level are set on the product of the production cross section and the branching fraction for each of these two simplified models. Heavy pseudoscalar boson masses between 400 and 700 GeV are excluded for a light pseudoscalar mass of 100 GeV. For the baryonic Z$'$ model, a statistical combination is made with an earlier search based on a data set of 36 fb$^{-1}$ collected in 2016. In this model, Z$'$ boson masses up to 1050 GeV are excluded for a dark matter particle mass of 1 GeV.

13 data tables

Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $e\tau_{h}$ final states in 2017 (upper left) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.

Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $e\tau_{h}$ final states in 2018 (upper right) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.

Distributions of the total transverse mass $M_{T}^{tot}$ in the SRs, comparing observed data with the SM prediction in the $\mu\tau_{h}$ final states in 2017 (center left) after the simultaneous maximum likelihood fit. Representative signal distributions are shown for the 2HDM+a (dashed red curve) and baryonic Z' (dashed black curve) models. The data points are shown with their statistical uncertainties, and the last bin includes overflow. The ``Other MC'' background contribution includes events from ggh, VBF, Wh, Zh, and electroweak vector boson production. The uncertainty band accounts for all systematic and statistical sources of uncertainty, after the fit to the data.

More…

Three-pion Bose-Einstein correlations measured in proton-proton collisions

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
JHEP 08 (2025) 174, 2025.
Inspire Record 2928684 DOI 10.17182/hepdata.160692

A study on the Bose-Einstein correlations for triplets of same-sign pions is presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV, recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb$^{-1}$. For the first time, the results are interpreted in the core-halo model. The parameters of the model are determined in regions of charged-particle multiplicity. This measurement provides insight into the nature of hadronisation in terms of coherence, showing a coherent emission of pions.

3 data tables

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 5-10.

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 11-20.

Results of the fit to the three-particle double ratio ($r_{d_{3}}$) for same-sign pion triplets, VELO track multiplicity for pp collision: 21-60.


Measurement of event shapes in minimum-bias events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SMP-23-008, 2025.
Inspire Record 2924533 DOI 10.17182/hepdata.157862

A measurement of event-shape variables is presented, using a data sample produced in a special run with approximately one inelastic proton-proton collision per bunch crossing. The data were collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 64 $\mu$b$^{-1}$. A number of observables related to the overall distribution of charged particles in the collisions are corrected for detector effects and compared with simulations. Inclusive event-shape distributions, as well as differential distributions of event shapes as functions of charged-particle multiplicity, are studied. None of the models investigated is able to satisfactorily describe the data. Moreover, there are significant features common amongst all generator setups studied, particularly showing data being more isotropic than any of the simulations. Multidimensional unfolded distributions are provided, along with their correlations.

65 data tables

The unfolded charged particle multiplicity distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.

The unfolded charged particle invariant mass distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.

The unfolded charged particle sphericity distribution of inelastic proton-proton collisions with at least three charged particles with transverse momentum higher than 0.5 GeV and pseudorapidity between -2.4 and 2.4. The total area of the histogram is normalised to 1.

More…

First measurement of $b$-jet mass with and without grooming

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
Phys.Lett.B 869 (2025) 139854, 2025.
Inspire Record 2922449 DOI 10.17182/hepdata.159893

The LHCb collaboration presents a novel suite of heavy-flavour jet substructure measurements at forward rapidity in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The jet mass is a perturbatively calculable probe of the virtuality of hard-scattered quarks and gluons, connecting small-distance quantum chromodynamics (QCD) with long-distance experimental measurement. It becomes dominated by nonperturbative corrections at small values, presenting an excellent test of QCD across a broad range of energies. Measuring heavy-flavour jet mass with a theoretically unambiguous flavour definition for the first time probes the gluon splitting mechanism for heavy-flavour production and pushes tests of perturbative QCD to unprecedented theoretical precision. Utilising the soft drop jet-grooming technique to access the perturbative jet core further enhances constraints on first-principles theory. Measurements of the jet mass for jets containing fully reconstructed $B^\pm$ hadrons are reported with and without grooming. These results offer unparalleled tests of quark flavour and mass dependence in QCD and provide a baseline for future studies of heavy-flavour jet quenching in heavy-ion collisions.

42 data tables

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $10 < p_{\textrm{T,jet}} < 12$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $12 < p_{\textrm{T,jet}} < 15$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

Groomed $B^\pm$-tagged jet invariant mass $m_{\textrm{jet,gr}}/p_{\textrm{T,jet}}$ for $R=0.5$ jets reconstructed in pp data, without any WTA flavour requirement. Normalization is set to unity. $15 < p_{\textrm{T,jet}} < 20$ GeV, soft drop $z_{\textrm{cut}}=0.1, \beta=0$.

More…

Search for dark matter produced in association with one or two top quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 08 (2025) 085, 2025.
Inspire Record 2919645 DOI 10.17182/hepdata.154755

A search is performed for dark matter (DM) produced in association with a single top quark or a pair of top quarks using the data collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to 138 fb$^{-1}$ of integrated luminosity. An excess of events with a large imbalance of transverse momentum is searched for across 0, 1 and 2 lepton final states. Novel multivariate techniques are used to take advantage of the differences in kinematic properties between the two DM production mechanisms. No significant deviations with respect to the standard model predictions are observed. The results are interpreted considering a simplified model in which the mediator is either a scalar or pseudoscalar particle and couples to top quarks and to DM fermions. Axion-like particles that are coupled to top quarks and DM fermions are also considered. Expected exclusion limits of 410 and 380 GeV for scalar and pseudoscalar mediator masses, respectively, are set at the 95% confidence level. A DM particle mass of 1 GeV is assumed, with mediator couplings to fermions and DM particles set to unity. A small signal-like excess is observed in data, with the largest local significance observed to be 1.9 standard deviations for the 150 GeV pseudoscalar mediator hypothesis. Because of this excess, mediator masses are only excluded below 310 (320) GeV for the scalar (pseudoscalar) mediator. The results are also translated into model-independent 95% confidence level upper limits on the visible cross section of DM production in association with top quarks, ranging from 1 pb to 0.02 pb.

57 data tables

The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the 1 b jet, 0 forward jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.

The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the 1 b jet, $\geq 1$ forward jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.

The post-fit $p_{\mathrm{T}}^{\text{miss}}$ distribution of the $\geq 2$ b jet signal region in the all hadronic channel. A representative signal model distribution is shown for the scalar mediator interaction with $(m_{\chi},m_{\phi})=(1,100)$GeV and couplings set to unity. The grey dashed area in the upper panel represents the total uncertainty in all of the backgrounds and the chosen signal model, while in the lower panel it represents only the total uncertainty in the backgrounds.

More…

Measurements of inclusive and differential Higgs boson production cross sections at $\sqrt{s}$ = 13.6 TeV in the H $\to$$γγ$ decay channel

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
JHEP 09 (2025) 070, 2025.
Inspire Record 2915441 DOI 10.17182/hepdata.157577

Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $σ_\text{fid}$ = 74 $\pm$ 11 (stat) $^{+5}_{-4}$ (syst) fb, in agreement with the standard model prediction of 67.8 $\pm$ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.

8 data tables

Differential fiducial cross sections for pT of the Higgs boson

Example description

Differential fiducial cross sections for rapidity of the Higgs boson

More…

Combination and interpretation of differential Higgs boson production cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIG-23-013, 2025.
Inspire Record 2913615 DOI 10.17182/hepdata.156816

Precision measurements of Higgs boson differential production cross sections are a key tool to probe the properties of the Higgs boson and test the standard model. New physics can affect both Higgs boson production and decay, leading to deviations from the distributions that are expected in the standard model. In this paper, combined measurements of differential spectra in a fiducial region matching the experimental selections are performed, based on analyses of four Higgs boson decay channels ($\gamma\gamma$, ZZ$^{(*)}$, WW$^{(*)}$, and $\tau\tau$) using proton-proton collision data recorded with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The differential measurements are extrapolated to the full phase space and combined to provide the differential spectra. A measurement of the total Higgs boson production cross section is also performed using the $\gamma\gamma$ and ZZ decay channels, with a result of 53.4$^{+2.9}_{-2.9}$ (stat)$^{+1.9}_{-1.8}$ (syst) pb, consistent with the standard model prediction of 55.6 $\pm$ 2.5 pb. The fiducial measurements are used to compute limits on Higgs boson couplings using the $\kappa$-framework and the SM effective field theory.

17 data tables

Observed best fit differential cross section for the $p_{T}^{H}$ observable

Observed best fit differential cross section for the $N_{jets}$ observable

Observed best fit differential cross section for the $p_{T}^{j1}$ (GeV) observable

More…