Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

27 data tables

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

More…

Large-Angle Pion-Proton Elastic Scattering at High Energies

Orear, J. ; Rubinstein, R. ; Scarl, D.B. ; et al.
Phys.Rev. 152 (1966) 1162-1170, 1966.
Inspire Record 50774 DOI 10.17182/hepdata.407

Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.

22 data tables

'1'. '2'.

'1'. '2'.

No description provided.

More…

MEASUREMENTS OF PI0 PHOTOPRODUCTION CROSS-SECTIONS FOR INCIDENT GAMMA-RAY ENERGIES OF 2.0-Gev/c TO 5.0-Gev/c

Bolon, G.C. ; Garelick, C. ; Homma, S. ; et al.
Phys.Rev.Lett. 18 (1967) 926, 1967.
Inspire Record 51286 DOI 10.17182/hepdata.21770

Cross sections for the reaction γ+p→π0+p for incident gamma-ray energies of 2.0 to 5.0 GeV and for baryon four-momentum transfers squared of 0.5 to 4.0 (GeV/c)2 are presented. The results are compared with theoretical predictions based on Reggeized vector-meson exchange.

7 data tables
More…

5-GeV - 16-GeV SINGLE pi+ PHOTOPRODUCTION FROM HYDROGEN

Boyarski, A. ; Bulos, F. ; Busza, W. ; et al.
Phys.Rev.Lett. 20 (1968) 300-303, 1968.
Inspire Record 51151 DOI 10.17182/hepdata.21730

The differential cross sections for single-π+ photoproduction from hydrogen have been measured over a range of momentum transfers from -2×10−4 to -2 (GeV/c)2, and photon energies from 5 to 16 GeV. The differential cross section increases by roughly a factor of 2 as the magnitude of the square of the momentum transfer decreases from 0.02 (GeV/c)2. The cross section falls approximately as exp(−3|t|) at large momentum transfers, with a similar momentum-transfer dependence of the cross section at all photon energies studied.

4 data tables

No description provided.

No description provided.

No description provided.

More…

PHOTOPRODUCTION OF eta0 MESONS AT 4-Gev

Bellenger, D. ; Deutsch, S. ; Luckey, David ; et al.
Phys.Rev.Lett. 21 (1968) 1205, 1968.
Inspire Record 53018 DOI 10.17182/hepdata.21703

We have measured η0 photoproduction at 4 GeV. We find our results to be consistent with a theoretical preduction relating this cross section to ω0 production by π mesons using a vector-dominance model; there is no evidence for a dip or change of slope at −t=0.6 as seen in π0 photoproduction.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////).


HIGH-ENERGY PHOTOMESON PRODUCTION FROM HYDROGEN VIA THE 'u CHANNEL'

Anderson, Robert L. ; Gustavson, D. ; Johnson, J.R. ; et al.
Phys.Rev.Lett. 21 (1968) 479-481, 1968.
Inspire Record 52639 DOI 10.17182/hepdata.21700

We have investigated the photoproduction process γ+p→π++n over a wide range of energies and u values at the Stanford Linear Accelerator Center (SLAC) accelerator. We also have investigated γ+p→π−+N*++ at one value of u and γ+p→K++Λ0, Σ0 at one u value and three energies. Our results for dσdu for the photoproduction of π+ mesons from hydrogen are roughly α2π of the corresponding cross sections for the elastic scattering of π− mesons from hydrogen. The u dependence of our cross sections is not dominated by nucleon exchange as it is in the case of π+p elastic scattering.

4 data tables

No description provided.

No description provided.

No description provided.

More…

The production of nucleon resonances in proton proton collisions at high energy and large momentum transfers

Allaby, J.V. ; Binon, F. ; Diddens, A.N. ; et al.
Phys.Lett.B 28 (1968) 229-232, 1968.
Inspire Record 56834 DOI 10.17182/hepdata.29196

Experimental results are presented on the excitation of the nucleon isobars N ∗ (1518) and N ∗ (1688) in proton-proton collisions at an incident momentum of 19.2 GeV/ c and in the range of four-momentum squared 0.6 ⩽7 z . sfnc ; t | ⩽ 5.8 GeV 2 .

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).

Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).

Axis error includes +- 0.0/0.0 contribution (?////Due to the method used in estimating the area under the peak).


PHOTOPRODUCTION OF K+ LAMBDA AND K+ SIGMA0 FROM HYDROGEN FROM 5-GeV to 16-Gev

Boyarski, A. ; Bulos, F. ; Busza, W. ; et al.
Phys.Rev.Lett. 22 (1969) 1131-1133, 1969.
Inspire Record 54849 DOI 10.17182/hepdata.3394

Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.

9 data tables
More…

Elastic electron-proton scattering cross-sections measured by a coincidence technique

Goitein, M. ; Budnitz, R.J. ; Carroll, L. ; et al.
Phys.Rev.D 1 (1970) 2449-2476, 1970.
Inspire Record 61717 DOI 10.17182/hepdata.25070

We have measured elastic electron-proton scattering cross sections in the range of four-momentum transfers from 7 F−2[0.27 (GeV/c)2] to 150 F−2 [5.84 (GeV/c)2] and at scattered electron angles of between 20° and 34° in the laboratory. The estimated errors in the cross sections range from ±2.1% at the lowest momentum transfer to ±9.6% at the highest. Both the scattered electron and the recoil proton were detected, resulting in an overdetermination of the kinematics. When the constraint of a coincident proton is removed, there is no significant change in the estimated cross sections.

15 data tables

No description provided.

No description provided.

No description provided.

More…