A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 38.6 inverse femtobarns. These data are combined with the data collected at center-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 inverse femtobarns, respectively. All observations are consistent with the expectations for the standard model Higgs boson.
Observed and expected likelihood scans $f_{a3}\cos\phi_{a3}$. See Section 2 of the paper for more details.
Observed and expected likelihood scans $f_{a2}\cos\phi_{a2}$. See Section 2 of the paper for more details.
Observed and expected likelihood scans $f_{\Lambda1}\cos\phi_{\Lambda1}$. See Section 2 of the paper for more details.
Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at sqrt(s) = 13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pt ~ 0.1-1.7 GeV and rapidities abs(y) < 1. The pt spectra and integrated yields are compared to previous results at smaller sqrt(s) and to predictions of Monte Carlo event generators. The average pt increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at sqrt(s) = 0.9, 2.76, and 7 TeV show that the average pt and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV for multiplicity class 1 (Nrec=0-9).
Properties of the Higgs boson are measured in the H to ZZ to 4l (l= e, mu) decay channel. A data sample of proton-proton collisions at sqrt(s) = 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 inverse femtobarns is used. The signal strength modifier mu, defined as the ratio of the observed Higgs boson rate in the H to ZZ to 4l decay channel to the standard model expectation, is measured to be mu = 1.05 +0.19/-0.17 at m[H ]= 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2.92 +0.48/-0.44 (stat) +0.28/-0.24 (syst) fb, which is compatible with the standard model prediction of 2.76 +/- 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m[H] = 125.26 +/- 0.21 GeV and the width is constrained using on-shell production to be Gamma[H] < 1.10 GeV, at 95% confidence level.
Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.
Higgs fiducial cross section in bins of pT for the 4 leptons. The first uncertainty is statistical, the second is systematic uncertainties. The numbers in this HEP data entry are not divided by the bin width, and therefore the units are in fb.
Higgs fiducial cross section in bins of Jet Multiplicity The first uncertainty is statistical, the second is systematic uncertainty.
A search for physics beyond the standard model in the final state with two same-flavour leptons (electrons or muons) and two quarks produced in proton-proton collisions at sqrt(s) = 13 TeV is presented. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 2.3 inverse femtobarns. The observed data are in good agreement with the standard model background prediction. The results of the measurement are interpreted in the framework of a recently proposed model in which a heavy Majorana neutrino, N(l), stems from a composite-fermion scenario. Exclusion limits are set for the first time on the mass of the heavy composite Majorana neutrino, m[N(l)], and the compositeness scale Lambda. For the case m[N(l)] = Lambda, the existence of N(e) (N(mu)) is excluded for masses up to 4.60 (4.70) TeV at 95% confidence level.
Invariant mass distribution of two electrons and one large-radius jet. The events are selected accordingly to the signal region slection in the electron channel described in the paper.
Invariant mass distribution of two muons and one large-radius jet. The events are selected accordingly to the signal region slection in the muon channel described in the paper.
95% CL upper limits on the product of the production cross section $\sigma(pp\to N_e)$ and the branching ratio $B(N_e \to e q \bar{q}^{\prime})$ in electron channel, compared with theoretical predictions for HCMN model calculated with CalcHEP.
A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at sqrt(s) = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 15.2 inverse femtobarns collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.
Expected and observed exclusion limits at 95% confidence level as a function of $m(H^{\pm})$ for $\sigma_\mathrm{VBF}(H^{\pm}) \, \mathcal{B}(H^{\pm}\to W^{\pm}Z)$ for 15.2 $\mathrm{fb}^{-1}$ of proton-proton collisions at 13 TeV collected in 2015 and 2016.
We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.
Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.
Differential production cross sections of $J/\psi$ as a function of rapidity.
Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.
The differential cross section for inclusive particle production as a function of energy in proton-proton collisions at a center-of-mass energy of 13 TeV is measured in the very forward region of the CMS detector. The measurement is based on data collected with the CMS apparatus at the LHC, and corresponds to an integrated luminosity of 0.35 inverse microbarns. The energy is measured in the CASTOR calorimeter, which covers the pseudorapidity region -6.6 < eta < -5.2. The results are given as a function of the total energy deposited in CASTOR, as well as of its electromagnetic and hadronic components. The spectra are sensitive to the modeling of multiparton interactions in pp collisions, and provide new constraints for hadronic interaction models used in collider and in high energy cosmic ray physics.
Differential cross section as a function of the electromagnetic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.
Differential cross section as a function of the total energy in the region −6.6 < eta < −5.2 for events with xi>10−6.
Differential cross section as a function of the hadronic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.
The production cross-section of $J/\psi$ pairs is measured using a data sample of $pp$ collisions collected by the LHCb experiment at a centre-of-mass energy of $\sqrt{s} = 13 \,{\mathrm{TeV}}$, corresponding to an integrated luminosity of $279 \pm 11 \,{\mathrm{pb^{-1}}}$. The measurement is performed for $J/\psi$ mesons with a transverse momentum of less than $10 \,{\mathrm{GeV}}/c$ in the rapidity range $2.0<y<4.5$. The production cross-section is measured to be $15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}$. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the $J/\psi$ pair are measured and compared to theoretical predictions.
Differential cross-section of $J/\psi$ pair as a function of $p_{T}(J/\psi J/\psi)$.
Differential cross-section of $J/\psi$ pair as a function of $p_{T}(J/\psi)$.
Differential cross-section of $J/\psi$ pair as a function of $y(J/\psi J/\psi)$.
Measurements of the cross-section for producing \bquark quarks in the reaction $pp\to b\bar{b} X$ are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity $\eta$ in the range $2<\eta<5$ covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of $b$-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross-sections in the covered $\eta$ range are $72.0\pm 0.3\pm6.8~\mu$b and $144\pm 1\pm 21~\mu$b for 7 and 13 TeV. The ratio is $2.00\pm0.02\pm0.26$, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at 7 TeV, but differs somewhat at 13 TeV. The measured ratio of cross-sections is larger at lower $\eta$ than the model prediction.
The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 7 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.
The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 13 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.
The ration of the cross-sections as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, for center-of-mass energies of 13 and 7 TeV. The first uncertainty is statistical and the second systematic.
The cross section of top quark-antiquark pair production in proton-proton collisions at sqrt(s) = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 inverse femtobarns. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.
Summary of the individual contributions to the uncertainty in the $\sigma_{t\bar{t}}$ measurement.
Measurement of the $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV.
Number of dilepton events obtained after applying the full selection. The results are given for the individual sources of background, $t\bar{t}$ signal with a top quark mass of 172.5 GeV and $\sigma_{t\bar{t}}$ = 832 +/- 46 pb, and data. The uncertainties correspond to statistical and systematic components.