We have measured the polarization parameter in neuton-proton charge-exchange scattering for incident neutron momenta of 2-12 GeVc and 0.01<~|t|<~1.0 (GeVc)2. Results based on 300 000 events show a negative polarization whose magnitude increases monotonically with |t| approaching 60% for |t|∼0.6 and which has little energy dependence.
No description provided.
The polarization parameter for the reaction π−p→π0n has been measured at five incident been momenta between 1.03 and GeV/c. The results are compared with predictions of recent phase-shift analyses.
.
.
.
The results of the total cross section measurements of neutrons on protons, deuterons and nuclei C, O, Al, Cu, Sn, Pb in the energy range of 28–54 GeV are reported.
.
.
.
None
No description provided.
The π − p→n γ and π − p→n π ° differential cross sections have been measured for −0.9< cos θ ∗ <−0.45 (θ ∗ c.m. scattering angle) at 475 MeV/ c and 550 MeV/ c incident momenta. The π − p→n γ measurement is a good check of the detailed balance principle in the electromagnetic interactions of hadrons at these energies and is in good agreement with Walker's analysis. On the other hand the π − p→ π °n extrapolated values of 180° allows one to verify that the phases of the A 1 2 and A 3 2 amplitudes are equal.
No description provided.
No description provided.
BACKWARD CROSS SECTION ESTIMATED BY LEGENDRE POLYNOMIAL FIT.
The K − p → K 0 n polarization has been measured at 8 GeV/ c and for − t values ranging from 0 up tp 1.2 (GeV/ c ) 2 . A negative polarization has been found.
No description provided.
Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.
No description provided.
No description provided.
No description provided.
An experiment was done using an accelerated polarized proton beam and a polarized proton target. The elastic cross section for proton-proton scattering at 6.0 GeV/c and P⊥2=0.5−1.6 (GeV/c)2 was measured in the spin states ↑ ↑, ↓ ↓, and ↑ ↓ perpendicular to the scattering plane. The cross sections were found to be unequal by up to a factor of 2.
No description provided.
We present differential cross-section data for the reaction π+p→π+p near 180° in the center-of-mass system at beam momenta between 3.25 GeVc and 10 GeVc.
No description provided.
No description provided.
The asymmetry of π o and π + photoproduction from hydrogen has been measured. The π o -mesons were detected at 130° cms with E γ ranged from 0.9 to 1.65 GeV, and the π + -mesons at 40° cms with E γ ranged from 0.9 to 1.2 GeV. The results agree with model predictions of single pion photoproduction in the resonance region using fixed- t dispersion relations.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).