Study of the Charge Exchange Reactions $\pi^- p \to (\pi^0$, $\eta$, $\eta^\prime$) $n$ at 63-{GeV}

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Z.Phys.C 8 (1981) 95, 1981.
Inspire Record 156266 DOI 10.17182/hepdata.49658

None

4 data tables

INCLUDING SYSTEMATIC ERRORS.

STATISTICAL ERRORS ONLY.

STATISTICAL ERRORS ONLY.

More…

STUDY OF A2 PRODUCTION IN THE REACTION PI- P ---> K0 K- P AT 50-GEV/C, 100-GEV/C, AND 175-GEV/C

Bromberg, C. ; Dickey, J.o. ; Fox, G. ; et al.
Phys.Rev.D 27 (1983) 1-11, 1983.
Inspire Record 191493 DOI 10.17182/hepdata.23901

The reaction π−p→K0K−p has been measured from 50 to 175 GeV/c. The production characteristics of the A2 have been analyzed. We find spin and t dependence similar to lower energies, but the cross section falls rapidly with energy. In a Regge description of π−p→A2−p our data imply a rather small Pomeron-exchange component.

6 data tables

No description provided.

RAW CROSS SECTION WITHIN MASS CUTS.

No description provided.

More…

Highlights of the Reaction $\pi^- p \to \pi^- \pi^+ n$ at 100-{GeV}/$c$ and 175-{GeV}/$c$

Bromberg, C. ; Dickey, J.O. ; Fox, G.C. ; et al.
Phys.Rev.D 29 (1984) 588, 1984.
Inspire Record 13822 DOI 10.17182/hepdata.33875

We present a summary of the physics results from an experimental study of the reaction π−p→π−π+n at 100 and 175 GeV/c incident-beam momentum. Our data show the continuing dominance of one-pion exchange in these reactions with the characteristic 1Plab2 momentum dependence. We extract the pion Regge trajectory from our data on π−p→ρ0n and study the zero structure of the ππ differential cross section up to sππ=12 GeV2.

9 data tables

No description provided.

No description provided.

SPHERICAL HARMONIC MOMENTS.

More…

STUDY OF K*- (890) AND K*- (1430) PRODUCTION IN THE REACTION K- P ---> ANTI-K0 PI- P AT 100-GEV/C AND 175-GEV/C

Bromberg, C. ; Dickey, J. ; Fox, G. ; et al.
Phys.Rev.D 29 (1984) 2469-2475, 1984.
Inspire Record 205297 DOI 10.17182/hepdata.23731

The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.

8 data tables

No description provided.

No description provided.

No description provided.

More…

EVIDENCE FOR A NONTENSOR (Q ANTI-Q) MESON AT 1410-MEV PRODUCED IN THE REACTION PI- P ---> K0(S) K0(S) N AT 63-GEV

The ACCMOR collaboration Daum, C. ; Hertzberger, L.O. ; Hoogland, W. ; et al.
Z.Phys.C 23 (1984) 339-347, 1984.
Inspire Record 204305 DOI 10.17182/hepdata.16225

We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.

1 data table

No description provided.


Forward Particle Production in $\pi^- p$ and $K^- p$ Collisions at 58-{GeV}/$c$ and Comparison With Quark Models

The ACCMOR collaboration Pauß, F. ; Gonzalez-Arroyo, A. ; Ochs, W. ; et al.
Z.Phys.C 27 (1985) 211, 1985.
Inspire Record 206988 DOI 10.17182/hepdata.16120

We present single inclusive π±, π0 andK± spectra in the forward fragmentation region (x>0.2,pT<1.5 GeV/c) as well as correlations between two charged particles. The data were recorded in an unseparated negative hadron beam at the CERN SPS using a large acceptance forward spectrometer. Our maasurements are compared in detail with several models which emphasise the role of the beam valence quarks in this production process. The connection to measurements at largepT is also investigated.

3 data tables

ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.

ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.

ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.


Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.


Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.


The reaction e+ e- ---> gamma gamma (gamma) at Z0 energies

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 268 (1991) 296-304, 1991.
Inspire Record 317825 DOI 10.17182/hepdata.29352

The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.

2 data tables

Radiative effects are subtracted.

Radiative effects subtracted.


Production of strange particles in the hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 275 (1992) 231-242, 1992.
Inspire Record 322503 DOI 10.17182/hepdata.29267

An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.

7 data tables

No description provided.

No description provided.

No description provided.

More…