Results are presented of a search for supersymmetric particles in events with large missing transverse momentum and at least one heavy flavour jet candidate in sqrt{s} = 7 TeV proton-proton collisions. In a data sample corresponding to an integrated luminosity of 35 pb-1 recorded by the ATLAS experiment at the Large Hadron Collider, no significant excess is observed with respect to the prediction for Standard Model processes. For R-parity conserving models in which sbottoms (stops) are the only squarks to appear in the gluino decay cascade, gluino masses below 590 GeV (520 GeV) are excluded at the 95% C.L. The results are also interpreted in an MSUGRA/CMSSM supersymmetry breaking scenario with tan(beta)=40 and in an SO(10) model framework.
Distribution of the effective mass for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the missing ET for data and the SM expectation in the zero-lepton plus 3 jet channel.
Distribution of the effective mass for data and the SM expectation in the one-lepton plus 2 jet channel.
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 35 inverse picobarns of analysed data. Gluino masses below 500 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino. The exclusion increases to 870 GeV for equal mass squarks and gluinos. In MSUGRA/CMSSM models with tan(beta)= 3, A_0=0 and mu>0, squarks and gluinos of equal mass are excluded below 775 GeV. These are the most stringent limits to date.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the two highest pT jets) for events with at least 2 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma error limits uncertainty band.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the three highest pT jets) for events with at least 3 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
The distribution in MT2 for events with at least 2 jets after the application of all selection criteria (other than the MT2 cut itself). The table shows the number of observed data points per 40 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
This Letter presents the first search for supersymmetry in final states containing one isolated electron or muon, jets, and missing transverse momentum from sqrt{s} = 7 TeV proton-proton collisions at the LHC. The data were recorded by the ATLAS experiment during 2010 and correspond to a total integrated luminosity of 35 pb-1. No excess above the standard model background expectation is observed. Limits are set on the parameters of the minimal supergravity framework, extending previous limits. For A_0 = 0 GeV, tan beta = 3, mu > 0 and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% confidence level.
Distribution of ET(C=MISSING) IN GEV for data and background MC calculation.
Distribution of MT IN GEV for data and background MC calculation.
Distribution of M(C=EFFECTIVE) IN GEV for data and background MC calculation.
We present the first observation of the all hadronic decay of tt¯ pairs. The analysis is performed using 109pb−1 of pp¯ collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We observe an excess of events with five or more jets, including one or two b jets, relative to background expectations. Based on this excess we evaluate the production cross section to be in agreement with previous results. We measure the top mass to be 186±10±12GeV/c2.
The cross section is given in the paper at a TQ mass of 175 GeV. The values at TQ mass = (175 +- 10) GeV is evaluated as +20% and -12% as given in the paper. The statistical error has also been scaled.
The measured value of the top mass.
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).