Date

The Jet pseudorapidity distribution in direct photon events in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 57 (1998) 1359-1365, 1998.
Inspire Record 453369 DOI 10.17182/hepdata.54263

We present the first measurement of the jet pseudorapidity distribution in direct photon events from a sample of pp¯ collisions at s=1.8TeV, recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from hard quark-gluon Compton scattering, qg→qγ, with the final state quark producing the jet of hadrons. The jet pseudorapidity distribution in this model is sensitive to parton momentum fractions between 0.015 and 0.15. We find that the shape of the measured pseudorapidity distribution agrees well with next-to-leading order QCD calculations.

1 data table

The fully corrected shape of the pseudorapidity distribution normalised to the data in the absolute pseudorapidity bin from 0 to 0.7.


Properties of jets in W boson events from 1.8-TeV anti-p p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 4760-4765, 1997.
Inspire Record 448076 DOI 10.17182/hepdata.54006

We present a study of events with W bosons and hadronic jets produced in pbar p collisions at a center of mass energy of 1.8 TeV. The data consist of 51400 W^+/- -> e^+/- nu decay candidates from 108 pb^-1 of integrated luminosity collected with the CDF detector at the Tevatron Collider. The cross sections and jet production properties have been measured for W + \geq 1 to \geq 4 jet events. The data are compared to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated fragmentation.

10 data tables

W and Z0 + njet cross sections.. Data for Z0 read from the plot.

ET distribution of the highest ET jet W + >=1jet production. Data read from the plot.

ET distribution of the second highest ET jet W + >=2jet production. Data read from the plot.

More…

Measurement of the W pair cross section in e+ e- collisions at 172-GeV.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 415 (1997) 435-444, 1997.
Inspire Record 446940 DOI 10.17182/hepdata.47408

The e + e − → W + W − cross section is measured in a data sample collected by ALEPH at a mean centre-of-mass energy of 172.09 GeV, corresponding to an integrated luminosity of 10.65 pb −1 . Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7±1.2 (stat.) ±0.3 (syst.) pb . The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W→hadrons) =67.7±3.1 (stat.) ±0.7 (syst.) % , allowing a determination of the CKM matrix element | V cs |=0.98±0.14(stat.)±0.03(syst.).

2 data tables

Cross sections for the different topologies.

Combined W+ W- cross section.


Measurement of f(c --> D*+ X), f(b --> D*+ X) and Gamma(c anti-c)/Gamma(had) using D*+- mesons.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 1 (1998) 439-459, 1998.
Inspire Record 447145 DOI 10.17182/hepdata.47409

The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.

3 data tables

No description provided.

No description provided.

The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.


Measurement of the Q**2 evolution of the photon structure function F2(gamma).

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 411 (1997) 387-401, 1997.
Inspire Record 446673 DOI 10.17182/hepdata.47450

New measurements are presented of the photon structure function F_2^gamma(Q) at four values of Q^2 between 9 and 59 GeV/c^2 based on data collected with the OPAL detector at centre-of-mass energies of 161-172 GeV, with a total integrated luminosity of 18.1 pb^-1. The evolution of F_2^gamma with Q^2 in bins of x is determined in the Q^2 range from 1.86 to 135 GeV/c^2 using data taken at centre-of-mass energies of 91 GeV and 161-172 GeV. F_2^gamma is observed to increase with Q^2 with a slope of 1/alpha_em dF_2^gamma/dln(Q^2) = 0.10 +0.05 -0.03 measured in the range 0.1 < x < 0.6.

5 data tables

Measured values of F2 for the SW sample.

Measured values of F2 for the FD sample.

F2 for the full X range (0.1 to 0.6) as a function of Q**2. The full SW andFD sample points are tabulated for completeness but are not in the plot or fits . The first three points are previous OPAL data at sqrt(s) = 91 GeV (ZP C74(1997)33).

More…

Spin alignment of leading K*(892)0 mesons in hadronic Z0 decays.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 210-224, 1997.
Inspire Record 447146 DOI 10.17182/hepdata.47440

Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.

4 data tables

Inclusive K*= cross section.

Helicity density matrices elemnts.

Ratios of helicity density matrices elements.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 130-GeV to 172-GeV at LEP

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 2 (1998) 441-472, 1998.
Inspire Record 447186 DOI 10.17182/hepdata.47404

Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.

15 data tables

SIG(C=MEAS) and SIG(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.

The angular distribution of the thrust axis. Errors include statistical and systematic effects combined, with the former dominant.

The measured values include the effect of interference between initial- andfinal-state radiation.

More…

Measurement of the proton structure function F2 and sigma(tot)(gamma* p) at low Q**2 and very low x at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 432-448, 1997.
Inspire Record 445553 DOI 10.17182/hepdata.44513

A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.

8 data tables

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

More…

Measurement of the photon structure function F2(gamma) at low x.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 225-234, 1997.
Inspire Record 447187 DOI 10.17182/hepdata.49560

Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt{s_ee} ~ M_{Z^0}. The photon structure function F_2^gamma(x,Q^2) is explored in a Q^2 range of 1.1 to 6.6 GeV/c^2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F_2^gamma(x,Q^2) at <Q^2> = 1.86 GeV^2 and 3.76 GeV^2 in five logarithmic x bins from 0.0025 to 0.2.

2 data tables

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.


Search for new gauge bosons decaying into dileptons in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 2192-2197, 1997.
Inspire Record 442760 DOI 10.17182/hepdata.42195

We have searched for heavy neutral gauge bosons (Z′) in dielectron and dimuon decay modes using 110pb−1 of p¯p collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We present a limit on the production cross section times branching ratio of a Z′ boson decaying into dileptons as a function of Z′ mass. For mass MZ′>600GeV/c2, the upper limit is 40 fb at 95% confidence level. We set the lower mass limits of 690, 590, 620, 595, 565, 630, and 600GeV/c2 for ZSM′, Zψ, Zη, Zχ, ZI, ZLR, and ZALRM, respectively.

1 data table

M is the mass of ZPRIME boson. Sigma times branching ratio.