The differential cross section for π − p → n π o has been measured in detail from 150 to 600 MeV. The backward cross section has a previously unobserved dramatic dip at 425 MeV. We interpret this dip in terms of interference between the P 33 (1236) and the P 11 (1470) resonances. These data provide strong evidence for the adequacy of the phase shift solutions in this energy range.
SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.
SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.
SCALED TO AGREE WITH SOLUTION AT 225 MEV AND THEN INTERPOLATED.
None
No description provided.
No description provided.
Differential cross sections as a function of momentum are presented for the production of K+ mesons in p−p collisions at incident proton energies of 2.54, 2.88, and 3.03 GeV. The measurements were made at 20°, 30°, and 40° relative to the direction of the internal proton beam of the Princeton-Pennsylvania accelerator. At 2.54 GeV, the results follow closely the predictions from phase space (with 60% K+ΣN and 40% K+Λp in the final state). At 2.88 and 3.03 GeV, however, there is a definite disagreement with phase space. The data are compared to the predictions of three models: (1) a model based on the assumption that K's are produced via p+p→K++X+, where X+ is a B=2, S=−1 resonance which decays into a nucleon+hyperon; (2) the isobar model; and (3) the one-pion-exchange model. Model (1) is found to be inconclusive, model (2) is inadequate, and model (3) is partly successful in predicting total cross sections, but not in interpreting the detailed experimental observations.
No description provided.
No description provided.
No description provided.
Differential cross sections as a function of momentum are presented for the production of π mesons, K mesons, protons, deuterons, tritons, and He3 at various laboratory angles by 2.9-BeV protons striking Be and Pt targets. The Be data were taken at 13°, 30°, 60°, and 93° relative to the direction of the Princeton-Pennsylvania Accelerator internal proton beam; the Pt data were taken at 13° and 93° only. The results are compared with the corresponding data in hydrogen in order to investigate the role of the complex nucleus in particle production at this energy.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.