This paper reports measurements of the hadrons produced in the inelastic scattering of 147-GeV muons by protons and deuterons in an experiment carried out at Fermi National Accelerator Laboratory. Both the scattered muon and the hadrons were measured in a large spectrometer. Properties of the hadron spectra are presented for proton, deuteron, and neutron targets and compared with theoretical models and with hadron spectra from related processes. Emphasis is placed on the quark-parton model and the data are found to be in substantial agreement with it. The average transverse momentum of the hadrons with respect to the virtual photon direction shows no dependence on the muon scattering variables. The data display "jet behavior" of the inclusive hadrons comparable to that found in e+e− annihilations.
No description provided.
No description provided.
Inclusive hadron production in muon-proton inelastic scattering has been measured for q2>0.5 (GeV/c)2 and 10<ν<135 GeV. The results are presented in the form of the transverse momentum distribution of charged hadrons and the hadron invariant structure function F(x′). Results are given for different regions of q2 and s.
No description provided.
No description provided.
No description provided.
Results on kaon, pion, and proton production in muon-proton scattering are presented for 1<Q2<80 GeV2 with an average Bjorken x of 0.033. The measured particle fractions for z>0.2(z=Phadν) are fπ=0.764±0.028, fK=0.187±0.042, and fp=0.049±0.013. The K±π± ratios as a function of z and pT2 are presented: The ratios increase with z, and with pT2 for z<0.3.
No description provided.
The production of Ks0, Λ0, and Λ¯0 has been measured in deep-inelastic muon scattering at 225 GeV; decays into two charged hadrons were detected. Momentum distributions are compared to the inclusive charged-hadron distributions measured in the same experiment. The range of virtual-photon parameters covered is 0.4<Q2<50 GeV2 and 20<ν<210 GeV.
No description provided.
We have studied muon-produced hadrons from a deuterium target. The structure functions and the charge ratios are reported for neutrons; the transverse momentum and azimuthal distributions are reported for deuterons. The structure function for the neutron is similar to that of the proton. The charge ratio of produced hadrons follows the expectation of a simple spin-½ quark model. Transverse-momentum results agree with those at lower energy and are similar to those from hadron-hadron interactions. No azimuthal anisotropy is seen.
No description provided.
No description provided.
No description provided.
Measurements have been made of the inclusive scattering of 96, 147, and 219 GeV muons from hydrogen, and of 147 GeV muons from deuterium. Results are presented for the nucleon structure function F2(x,Q2) [≡νW2(x,Q2)] for 10<ν<200 GeV and 0.2<Q2<80 GeV2. The value of F2 rises with Q2 at small x, and falls with Q2 at large x, in agreement with the ideas of quantum chromodynamics. An average value of the ratio σLσT≡R=0.52±0.35 has been obtained for the region 0.003<x<0.10 and 0.4<Q2<30 GeV2. The values of F2 from this experiment have been combined with those from other charged-lepton scattering experiments to determine moments of the structure functions. The variation with Q2 of these moments is used to derive values for Λ, taking into account corrections up to second order in αs. The fit to the data is very good.
No description provided.
No description provided.
No description provided.
Results on the protron structure function, F2, are presented for 0.3<q2<80.0 GeV2 and 10<ν<200 GeV. The results support the conclusions of earlier work at 97 and 147 GeV that scaling is violated. A new value for R=σSσT=0.44±0.25 has been obtained using all the Fermilab proton measurements.
No description provided.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton--proton collisions at the centre-of-mass energy of $\sqrt{s}$ = 8 TeV in a sample of 20.3 fb$^{-1}$ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.
Reconstruction efficiency of TYPE2 LJs as a function of the $p_{\mathrm{T}}$ of the $s_{d_{1}}$ for LJs with two $\gamma_{d}$'s for an \scalar mass of 2 GeV. For the $\gamma_{d}$, the kinematically allowed mass of 0.15 GeV is considered. The distributions for the other $s_{d_{1}}$ masses are very similar. The uncertainties are statistical only.
This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of sqrt(s) = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.
Invariant mass of the photon+jet pair for events passing the final selections. The number of observed events and the fit background estimates are given in each bin, where the fit estimates are rounded to the nearest integer.
The 95% CL upper limits on SIG*BR*A*EPSILON for a hypothetical signal with a Gaussian-shaped M(GAMMA JET) distribution as a function of the signal mass M(G) for four values of the relative width SIGMA(G) / M(G).
Acceptance (A), efficiency (EPSILON), cross-section (SIG) and limits in number of events for the quantum black hole (QBH) benchmark model, as a function of the threshold mass M(th). Uncertainties on the cross section are on the order of 1%. The limits include statistical uncertainties only. Expected limits include the 68% uncertainty band. Acceptance was calculated using parton-level quantities by imposing criteria that apply directly to kinematic selections (photon/jet |eta|, photon/jet transverse momentum, Delta(eta), Delta(R)). All other selections, which in general correspond to event and object quality criteria, were used to calculate the efficiency based on the events included in the acceptance.