The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.
Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.
Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.
Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.
We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.
Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.
The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.
None
Data at Parton level.
Ratio data/(Monte Carlo) at Parton level.
Data at Parton level.. Distribution of Ellis-Karliner angle.
None
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
No description provided.
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
No description provided.
Forward backward charge asymmetry.
No description provided.
We present measurements of global event shape distributions in the hadronic decays of theZ0. The data sample, corresponding to an integrated luminosity of about 1.3 pb−1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at theZ0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.
Corrected Thrust distribution.
Corrected Major distribution.
Corrected Minor distribution.
The production of\(\bar D\) mesons in neutroncarbon interactions at 40–70 GeV/c has been investigated. The\(\bar D\) mesons were detected via the hadronic decay modes\(\bar D^0\to K^{* + } (892)\pi ^ -\) andD−→K*+(892)π−π−. In the kinematical regionxF>0.5 andpT<1 GeV/c the following inclusive cross sections were measured:\(\sigma _{\bar D^0 }= (28 \pm 14)\mu b\) and\(\sigma _{D^ -}= (28 \pm 13)\mu b\) per carbon nucleus. The invariant longitudinal momentum spectra can be described by (1−x)N with\(N_{\bar D^0 }= 1.1 \pm 0.5 \pm 0.4\) and\(N_{D^ -}= 0.8 \pm 0.4 \pm 0.4\) The transverse momentum spectra were parametrized by exp (−BpT2) with\(B_{\bar D^0 }= (1.2_{ - 0.9}^{ + 1.1} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \) and\(B_{D^ -}= (1.8_{ - 1.0}^{ + 1.3} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \).
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
.
.
.