High Precision Measurement of the $\pi^- p$ Elastic Scattering in a Wide Angular Range at the Incident Momenta Between 2.06-{GeV}/c and 3.48-{GeV}/c

Terada, S. ; Sumi, Y. ; Kadota, S. ; et al.
Nucl.Phys.B 175 (1980) 1-26, 1980.
Inspire Record 152926 DOI 10.17182/hepdata.34413

We have measured the differential cross section for π − p elastic scattering at eight incident momenta, 2.06, 2.26, 2.45, 2.65, 2.86, 3.05, 3.26 and 3.48 GeV/ c , in a wide range of c.m. scattering angle between 15° and 160°. A pronounced dip-bump structure has been found at large angles. Details of the structure are quantitatively described as functions of the incident momentum.

8 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the Polarization Parameter in Backward pi- p Elastic Scattering at 3.5-GeV/c

The CERN-Trieste collaboration Birsa, R. ; Bradamante, F. ; Conetti, S. ; et al.
Nucl.Phys.B 117 (1976) 77-94, 1976.
Inspire Record 110105 DOI 10.17182/hepdata.35603

The polarization parameter has been measured for π − p elastic scattering in the backward region at 3.5 GeV/ c incident momentum. The experimental set-up consisted of a polarized target in a spectrometer magnet, hodoscopes and wire spark chambers. Data are presented for the range −0.95< u ⩽−0.19 GeV 2 . An isospin analysis has been carried out to separate the I u = 1 2 and I u = 3 2 contributions.

1 data table

BACKWARD SCATTERING.


Coulomb-Nuclear Interference in pi+- p and K+- p Elastic Scattering Below 3-GeV: Measurements, Real Parts and K+- p Dispersion Relations

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 105 (1976) 365-430, 1976.
Inspire Record 101037 DOI 10.17182/hepdata.13243

The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.

20 data tables

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

More…

Backward pi- p elastic scattering at 3 and 4 gev/c

Brabson, A. ; Calvelli, G. ; Cittolin, S. ; et al.
Phys.Lett.B 42 (1972) 283-286, 1972.
Inspire Record 85009 DOI 10.17182/hepdata.28198

We have measured dσ du for π − p elastic scattering at 3 and 4 GeV c in the ranges −0.119⩽ u ⩽0.113 and −0.233⩽ u ⩽0.088, respectively. A fit of the form d σ /d u = A exp ( Bu + Cu 2 ) gives B = 4.34±0.42 and C = 7.0±3.5 at 4 GeV c with χ 2 = 5.7 for 9 degrees of freedom; the simpler form d σ /d u = A exp( Bu ) gives B = 3.7 ± 0.3 with χ 2 = 9.6. At 3 GeV c we confirm with high statistics the structures already observed.

2 data tables

No description provided.

No description provided.


Measurements of pi- p elastic scattering from 1.71 to 5.53 gev/c

Fellinger, M. ; Gutman, E. ; Lamb, R.C. ; et al.
Phys.Rev.D 2 (1970) 1777-1782, 1970.
Inspire Record 61322 DOI 10.17182/hepdata.47092

The π−p elastic scattering differential cross section has been obtained at 18 incident momenta from 1.71 to 5.53 GeV/c. The measurements were taken over a limited range of squared four-momentum transfer t near the forward direction. The statistical accuracy and resolution of these data are comparable to, or better than, existing data. The parameter b in the expression dσdt=Aebt has been determined at each of our incident momenta, and a large (∼25%) enhancement in b as a function of momentum is observed at a c.m. energy of ∼2290 MeV. The relation of this bump in b with the well-established bump in the total π−p cross section at ∼2200 MeV is discussed.

18 data tables

No description provided.

No description provided.

No description provided.

More…