A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 38.6 inverse femtobarns. These data are combined with the data collected at center-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 inverse femtobarns, respectively. All observations are consistent with the expectations for the standard model Higgs boson.
Observed and expected likelihood scans $f_{a3}\cos\phi_{a3}$. See Section 2 of the paper for more details.
Observed and expected likelihood scans $f_{a2}\cos\phi_{a2}$. See Section 2 of the paper for more details.
Observed and expected likelihood scans $f_{\Lambda1}\cos\phi_{\Lambda1}$. See Section 2 of the paper for more details.
Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at sqrt(s) = 13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pt ~ 0.1-1.7 GeV and rapidities abs(y) < 1. The pt spectra and integrated yields are compared to previous results at smaller sqrt(s) and to predictions of Monte Carlo event generators. The average pt increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at sqrt(s) = 0.9, 2.76, and 7 TeV show that the average pt and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) at a centre-of-mass energy of 13 TeV.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV for multiplicity class 1 (Nrec=0-9).
Properties of the Higgs boson are measured in the H to ZZ to 4l (l= e, mu) decay channel. A data sample of proton-proton collisions at sqrt(s) = 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 inverse femtobarns is used. The signal strength modifier mu, defined as the ratio of the observed Higgs boson rate in the H to ZZ to 4l decay channel to the standard model expectation, is measured to be mu = 1.05 +0.19/-0.17 at m[H ]= 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2.92 +0.48/-0.44 (stat) +0.28/-0.24 (syst) fb, which is compatible with the standard model prediction of 2.76 +/- 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m[H] = 125.26 +/- 0.21 GeV and the width is constrained using on-shell production to be Gamma[H] < 1.10 GeV, at 95% confidence level.
Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.
Higgs fiducial cross section in bins of pT for the 4 leptons. The first uncertainty is statistical, the second is systematic uncertainties. The numbers in this HEP data entry are not divided by the bin width, and therefore the units are in fb.
Higgs fiducial cross section in bins of Jet Multiplicity The first uncertainty is statistical, the second is systematic uncertainty.
A search for physics beyond the standard model in the final state with two same-flavour leptons (electrons or muons) and two quarks produced in proton-proton collisions at sqrt(s) = 13 TeV is presented. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 2.3 inverse femtobarns. The observed data are in good agreement with the standard model background prediction. The results of the measurement are interpreted in the framework of a recently proposed model in which a heavy Majorana neutrino, N(l), stems from a composite-fermion scenario. Exclusion limits are set for the first time on the mass of the heavy composite Majorana neutrino, m[N(l)], and the compositeness scale Lambda. For the case m[N(l)] = Lambda, the existence of N(e) (N(mu)) is excluded for masses up to 4.60 (4.70) TeV at 95% confidence level.
Invariant mass distribution of two electrons and one large-radius jet. The events are selected accordingly to the signal region slection in the electron channel described in the paper.
Invariant mass distribution of two muons and one large-radius jet. The events are selected accordingly to the signal region slection in the muon channel described in the paper.
95% CL upper limits on the product of the production cross section $\sigma(pp\to N_e)$ and the branching ratio $B(N_e \to e q \bar{q}^{\prime})$ in electron channel, compared with theoretical predictions for HCMN model calculated with CalcHEP.
The results of a search for new heavy $W^\prime$ bosons decaying to an electron or muon and a neutrino using proton-proton collision data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV are presented. The dataset was collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb$^{-1}$. As no excess of events above the Standard Model prediction is observed, the results are used to set upper limits on the $W^\prime$ boson cross-section times branching ratio to an electron or muon and a neutrino as a function of the $W^\prime$ mass. Assuming a $W^\prime$ boson with the same couplings as the Standard Model $W$ boson, $W^\prime$ masses below 5.1 TeV are excluded at the 95% confidence level.
Transverse mass distribution for events satisfying all selection criteria in the electron channel.
Transverse mass distribution for events satisfying all selection criteria in the muon channel.
Upper limits at the 95% CL on the cross section for SSM W' production and decay to the electron+neutrino channel as a function of the W' pole mass.
A search for top squark pair production in pp collisions at sqrt(s) = 13 TeV is performed using events with a single isolated electron or muon, jets, and a large transverse momentum imbalance. The results are based on data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. No significant excess of events is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models of pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Depending on the details of the model, we exclude top squarks with masses as high as 1120 GeV. Detailed information is also provided to facilitate theoretical interpretations in other scenarios of physics beyond the standard model.
Result of the background estimates and data yields corresponding to 35.9 $\text{fb}^\text{$-$1}$ for the 27 signal regions.
Result of the background estimates and data yields corresponding to 35.9 $\text{fb}^\text{$-$1}$ for the 4 signal regions dedicated to compressed spectra.
The observed exclusion limits at 95% CL assuming 100% branching fraction for direct top squark pair production with decay $\widetilde{t}\widetilde{t} \rightarrow t \widetilde{\chi_1^0} t \widetilde{\chi_1^0}$.
A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons ($e$ or $\mu$), or at least three isolated leptons, is presented. The analysis relies on the identification of $b$-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton--proton collisions at $\sqrt{s}= 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb$^{-1}$, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring $R$-parity conservation or $R$-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino via an offshell top squark, $\tilde g\to t\bar{t}\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
The results of a search for vector-like top quarks using events with exactly one lepton, at least four jets, and large missing transverse momentum are reported. The search is optimised for pair production of vector-like top quarks in the $Z(\rightarrow \! \! \nu \nu) \, t + X$ decay channel. LHC pp collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$. No significant excess over the Standard Model expectation is seen and upper limits on the production cross-section of a vector-like $T$ quark pair as a function of the $T$ quark mass are derived. The observed (expected) 95% CL lower limits on the $T$ mass are 870 GeV (890 GeV) for the weak-isospin singlet model, 1.05 TeV (1.06 TeV) for the weak-isospin doublet model and 1.16 TeV (1.17 TeV) for the pure $Zt$ decay mode. Limits are also set on the mass as a function of the decay branching ratios, excluding large parts of the parameter space for masses below 1 TeV.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for BR($T \rightarrow Zt$) = 100%.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for branching ratios according to the singlet model.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for branching ratios according to the doublet model. Contributions from the $X$ or $B$ quark in the $(X^{5/3}, T)$ or $(T, B)$ doublet models are neglected, leading to very conservative limits.
A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the $pp$ collision data at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.
Measurement of signal strength
Event yields for the expected signal (S) and background (B) processes, and numbers of the observed data events in different categories. The full widths at half maximum (FWHM) of the signal $m_{μμ}$ distributions are also shown. In each category, the event yields are counted within an $m_{μμ}$ interval, which is centered at the simulated signal peak and contains 90% of the expected signal events. The expected signal event yields are normalized to $36.1 fb^-1$. The background in each category is normalized to the observed data yield, while the relative fractions between the different processes are fixed to the SM predictions.
The 95% CL upper limit on signal strength
Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.
Figure 2. Cross section upper limit (95% CL) on T1tttt cross section
Figure 2. Excluded gluino and neutralino masses at 95% CL for the T1tttt.
Figure 2. +1 sigma excluded gluino and neutralino masses at 95% CL for the T1tttt.