The magnetic moment of the Ξ0 hyperon has been measured to be μΞ0=−1.253±0.014 nuclear magnetons. A new measurement of μΛ is also reported.
No description provided.
The polarization of 26 000 Σ+ hyperons produced by 400-GeV protons on Be has been measured. The polarizations of Σ+ and Λ hyperons have the opposite sign. The magnitude increases with momentum at 5-mrad production angle, and averages 22% over the momentum range 140 to 280 GeV/c.
No description provided.
No description provided.
We have measured the cross sections for the Okubo-Zweig-Iizuka-rule-violating reactions π+n→φp and π+p→φΔ++ at 10 GeV/c using the large-aperture-solenoid spectrometer at the Stanford Linear Accelerator Center. We measure the total cross sections for these two reactions to be 179±72 nb for the φp reaction and 172±75 nb for the φΔ++ reaction. Both of these cross sections are consistent with the hypothesis of the φ being produced solely by its nonstrange-quark component as determined from the octet-singlet mixing angle resulting from application of the Gell-Mann—Okubo mass formula to the vector-meson nonet. These data are thus inconsistent with an ideally mixed φ meson.
Axis error includes +- 0.0/0.0 contribution (RES-DEF(RES=DEL(1232P33)++,BACK=CORRECTED)//RES-DEF(RES=PHI,BACK=CORRECTED)//GLAUBER).
Results of measurements of the polarization parameter in K+p elastic scattering at 650, 700, 845, and 940 MeV/c are presented. Details of the measurements are described and results are compared with previous measurements and partial-wave parametrizations of the data. The implication of the existence of Z* resonances in light of these results is discussed.
No description provided.
None
UNNORMALIZED MULTIHADRON TOTAL CROSS SECTION ENERGY SCAN.
None
No description provided.
CROSS SECTIONS FOR POSITIVE AND NEGATIVE G-PARITY FINAL STATES (EVEN AND ODD NUMBERS OF PIONS).
No description provided.
A search for narrow resonances in e + e − annihilation between 33.00 and 36.72 GeV is reported. No evidence is found for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is determined to be 28 nb MeV, a value significantly below that expected for the lowest t t bound state.
AVERAGE R VALUE THROUGHOUT ENERGY RANGE. SYSTEMATIC ERROR IS CONSERVATIVE AND WILL BE IMPROVED.
R VALUES AT 20 MEV STEPS. DATA TAKEN FROM TABLE IN THE PREPRINT.
The\(K^ -p \to \bar K^0 n\) charge exchange differential cross-section has been measured at 30 GeV/c with high statistical accuracy and high angular resolution. The experiment was made at the IHEP 70 GeV accelerator, by using a hodoscope hadron calorimeter to detect KL0. The cross-section shows a dip at small |t|, which indicates a dominance of spin-flip amplitudes in ρ and A2 exchanges in thet-channel.
No description provided.
No description provided.
The energy dependence of the average of the charged multiplicity and its dispersion in π + /K + /p interaction on protons at 147 GeV/ c is found to be the same as in e + e − annihilations if an “effective energy” variable is used instead of the total energy. The effective energy S eff is defined as the invariant mass of all secondaries left after the two leading particles have been removed. Fitting the expression aS eff b to the average charge multiplicity 〈 n ch 〉, we find the power b to be in good agreement with the value of 0.25 predicted by Fermi's statistical model and by Landau's hydrodynamical model.
BINS IN WEFF SELECTED SO AS TO YIELD 200 EVENTS IN EACH BIN.
200 EVENTS IN EACH BIN IN WEFF.
50 EVENTS IN EACH BIN IN WEFF.
Q-meson production is studied in the hypercharge exchange reaction π-p → (Kππ)Λ at 3.95 GeV/c by selecting events witht(π- →Kππ)>1.2GeV2. An enhancement with a mass of 1294±10 MeV and a width of 66±15 MeV is observed in the (Kππ) mass distribution. A spin-parity analysis of the (Kππ) decay Dalitz plot shows the enhancement to be in theJP=1+S(Kϱ) wave and is therefore attributed toQ1-meson production. No evidence is found for the decayQ1→K0ω but limited statistics allow only placing an upper limit of 30% for the decay ratioKω/Kϱ0. TheQ1 production cross section fort(π- →Kππ)>1.2GeV2 is 8±1.3 μb. No evidence is found for the process π-p→Q2Λ withQ2→K*π for which the partial wave analysis gives an upper cross section limit of 2.5 μb at the 95% confidence level.
PRODUCTION OF Q1 OF MASS 1294 +- 10 MEV, WIDTH 66 +- 15 MEV. IN BACKWARD HEMISPHERE, CROSS SECTION IS <0.5 MUB (CL = 95 PCT).
UPPER LIMIT FOR PRODUCTION OF Q2 OF MASS AROUND 1400 MEV.