We report results from a measurement of the inclusive diffraction dissociation of photons on hydrogen, γp→Xp, in the range 75
4 GeV2. We test the finite-mass sum rule and, by comparing γp with π−p data obtained in the same apparatus, we test factorization.
EXTRACTED ELASTIC CROSS SECTIONS.
RESULTS OF EXPONENTIAL FITS TO ELASTIC CROSS SECTIONS.
DIFFERENTIAL CROSS SECTIONS FOR INELASTIC EVENTS.
A measurement is reported of charged multiplicity distributions of high-mass diffractive π±, K±, and p± states produced in 100 and 200 GeV/c hadron-proton collisions, h+p→X+p. The distributions are described well by a Gaussian function that depends only on the available mass M=Mx−Mh, has a maximum at n0≅2M12, and a peak-to-width ratio n0D≅2.
MULTIPLICITY VERSUS AVAILABLE MASS MDD-MPI.
MULTIPLICITY VERSUS AVAILABLE MASS (MDD - MK).
MULTIPLICITY VERSUS AVAILABLE MASS (MDD - MP).
We report on a measurement of elastic differential cross sections for p±p, π±p, and K±p at 100 and 200 GeV/c in the range 0.03<|t|<0.10 (GeV/c)2. Our data display a simple exponential dependence which is consistent with other measurements in this t region or with extrapolations from higher t.
No description provided.
No description provided.
None
THE ERRORS INCLUDE THE UNCERTAINTIES IN THE FIT PARAMETERS SLOPE AND SIG, WHILE THE PURELY STATISTICAL ERRORS ARE ALSO GIVEN.
From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.
No description provided.
We report results from a measurement of antiproton-proton and proton-proton small-angle elastic scattering at √ s = 24.3 GeV in the range 0.001 ⩽ | t | ⩽ 0.06 (GeV/ c ) 2 . The measurement was performed at the CERN p p Collider by using silicon detectors to observe protons recoiling from a hydrogen cluster-jet target intercepting the stored p and p beams. Fits to the measured differential cross sections yield the ratio of the real to the imaginary part of the forward nuclear scattering amplitude ρ and the nuclear slope parameter b for both p p and pp. We find that the difference Δρ = ρ ( p p ) − ρ( pp ) = 0.031 ± 0.010 agrees with conventional fits and disagrees with the “odderon” fit designed to accommodate the recent UA4 measurement of ρ( p p) at 546 GeV.
Data requested from authors.
No description provided.
Nuclear slopes fixed to world average.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.
The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.
MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.
We report a measurement of the diffraction dissociation differential cross section d2σSD/dM2dt for p¯p→p¯X at √s =546 and 1800 GeV, M2/s<0.2 and 0≤-t≤0.4 GeV2. Our results are compared to theoretical predictions and to extrapolations from experimental results at lower energies.
Single diffraction dissociation cross section.
None
No description provided.