We report on a search for Ξ* production in the mass range 1.5-2.0 GeV / c2 in K−n interactions at 2.87 GeV / c. Upper limits on Ξ* production cross sections, as well as reaction cross sections for those final states in which Ξ*'s may be observed, are presented. In particular, an upper limit of 5.4 μb is placed on production of an isospin-−32 Ξ*−−.
CROSS SECTIONS ARE QUOTED FOR THE SAME FINAL STATE DERIVED FROM DIFFERENT TOPOLOGIES.
UPPER LIMITS AT 90 PCT CONFIDENCE LEVEL FOR RESONANCE ABOVE SMOOTH BACKGROUND.
No description provided.
Evidence is presented for production of Ξ* resonances, decaying into Ξπ, Ξ(1530)π, ΛK¯, and ΣK¯, in K−p interactions at 2.87 Gev/c. The data represent final combined results from a 30-events/μb hydrogen exposure and an 18-events/μb exposure in deuterium designed to study Ξ* production in the mass interval 1.46-2.07 GeV/c2. In addition to Ξ(1820) and Ξ(1940), signals have been observed at masses of 1630 MeV/c2 and 1860 MeV/c2 decaying into Ξ−π+ and YK¯, respectively. Reaction cross sections have been measured for all final states containing two visible signs of strangeness, and for the final states ΛK−K+ and Σ0K−K+.
CROSS SECTIONS ARISING FROM VARIOUS TOPOLOGIES.
No description provided.
UPPER LIMITS ARE AT 90 PCT CONFIDENCE LEVEL. XI(1870) IS CALLED XI(1860) BY AUTHORS.
A search for exotic I=2 hyperons decaying into Σ−π− or Σ−π−π0 has been completed in the final states Σ−π+π− and Σ−π+π−π0 produced in K−n interactions at 2.87 GeV/c. Cross sections for these two final states are 303±31 μb and 660±66 μb, respectively. Upper limits for exotic processes are σ(K−n→Y*−−π+, Y*−−→Σ−π−)<13 μb and σ(K−n→Y*−−π+, Y*−−→Σ−π−π0)<23 μb for Γ(Y*−−)<120 MeV; σ(K−n→Y*−−π+π0, Y*−−→Σ−π−)<28 μb for Γ(Y*−−)<80 MeV. Production cross sections have also been measured for all nonexotic resonances observed in the two final states.
No description provided.
An investigation has been performed of some properties of Σ(1660) produced in the reaction K−p→Σ+(1660)π− at 2.87 GeV/c incident K− momentum. The decay modes observed for this state include Λ(1405)π and Σπ. The spin and parity are measured to be JP=32−. The differential cross section of the Λ(1405)π decay mode is sharply peaked in the forward direction, falling exponentially with a slope of 5.6 ± 0.7 (GeV/c)−2, while the slope for the Σ0π+ decay mode is 2.1 ± 0.4 (GeV/c)−2. The difference in the ratio of backward to total events for the two decay modes also suggests that two Σ(1660)'s exist.
We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.
Charged-particle spectra associated with direct photon ($\gamma_{dir} $) and $\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\gamma_{dir}$ and $\pi^0$. Assuming no associated charged particles in the $\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\gamma_{frag}$), the associated charged-particle yields opposite to $\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\gamma_{dir}$ and $\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\gamma_{dir}$ and $\pi^0$, and independent of the $\gamma_{dir}$ energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.
The $z_{T}$ dependence of $\pi^{0}-h^{\pm}$ near side and away-side associated particle yields. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.
The $z_{T}$ dependence of away-side associated-particle yields for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.
The $z_{T}$ dependence $I_{AA}$ for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.
Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]
Measurements of the differential cross-section and the transverse single-spin asymmetry, A_N, vs. x_F for pi0 and eta mesons are reported for 0.4 < x_F < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb^{-1} was analyzed, which was recorded during p+p collisions at sqrt{s} = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross-section for pi0 is consistent with a perturbative QCD prediction, and the eta/pi0 cross-section ratio agrees with previous mid-rapidity measurements. For 0.55 < x_F < 0.75, A_N for eta (0.210 +- 0.056) is 2.2 standard deviations larger than A_N for pi0 (0.081 +- 0.016).
Differential production cross-sections for $\pi^0$ and $\eta$ at average pseudorapidity of 3.68. Also shown are the previously published STAR results for similar kinematics [21] and a NLO pQCD calculation of the π0 cross-section [32]. The error band represents the uncertainty in the calculation due to scale variations.
The $\eta$ to $\pi^0$ cross-section ratio is shown in the bottom panel. The error bars indicate the total statistical and systematic uncertainties.
We present the measurement of non-photonic electron production at high transverse momentum ($p_T > $ 2.5 GeV/$c$) in $p$ + $p$ collisions at $\sqrt{s}$ = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons ($\frac{e^++e^-}{2}$) at 3 GeV/$c < p_T <~$10 GeV/$c$ from bottom and charm meson decays to be ${d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0}$ = 4.0$\pm0.5$({\rm stat.})$\pm1.1$({\rm syst.}) nb and ${d\sigma_{D\to e} \over dy_e}|_{y_e=0}$ = 6.2$\pm0.7$({\rm stat.})$\pm1.5$({\rm syst.}) nb, respectively.
The electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3.0$ GeV/c
The electron pair invariant mass distributions for electrons at $8 < p_{T} < 10$ GeV/c
The simulated electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3$ GeV/c
We report measurements of charmed-hadron ($D^{0}$, $D^{*}$) production cross sections at mid-rapidity in $p$ + $p$ collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays $D^{0}\rightarrow K^{-}\pi^{+}$, $D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+}$ and their charge conjugates, covering the $p_T$ range of 0.6$-$2.0 GeV/$c$ and 2.0$-$6.0 GeV/$c$ for $D^{0}$ and $D^{*+}$, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is $d\sigma/dy|_{y=0}^{c\bar{c}}$ = 170 $\pm$ 45 (stat.) $^{+38}_{-59}$ (sys.) $\mu$b. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.
$c\bar{c}$ production cross section as inferred from D$^0$ and D$^\star$ production in p+p collisions at $\sqrt{s} = 200$ GeV at $|\eta| < 1$ compared with FONLL calculations. The D$^0$ and D$^\star$ data points were divided by the charm quark fragmentation ratios 0.565 ($c \rightarrow$ D$^0$) and 0.224 ($c \rightarrow$ D$^{\star +}$) [34], respectively, to convert to the $c\bar{c}$ production cross section.